

SPARTA Documentation

SPARTA stands for Stochastic PArallel Rarefied-gas Time-accurate Analyzer.

Version info

The SPARTA “version” is the date when it was released, such as 3 Mar
2014. SPARTA is updated continuously. Whenever we fix a bug or add a
feature, we release it immediately, and post a notice on this page of the WWW site [http://sparta.sandia.gov/bug.html]. Each dated copy of
SPARTA contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile
every time you run SPARTA. It is also in the file src/version.h and in
the SPARTA directory name created when you unpack a tarball, and at the
top of the first page of the manual (this page).

	If you browse the HTML doc pages on the SPARTA WWW site, they always
describe the most current version of SPARTA.

	If you browse the HTML doc pages included in your tarball, they
describe the version you have.

	The PDF file on the WWW site or in the tarball is
updated about once per month. This is because it is large, and we
don’t want it to be part of very patch.

	At some point, there also will be a Developer.pdf
file in the doc directory, which describes the internal structure and
algorithms of SPARTA.

Note

	The source for this version of the manual is in the docs branch of this fork [https://github.com/fiolj/sparta/tree/docs].

	The PDF and EPUB versions for this reformatted manual are also available on readthedocs.

SPARTA is a Direct Simulation Monte Carlo (DSMC) simulator designed to
run efficiently on parallel computers. It was developed at Sandia
National Laboratories, a US Department of Energy facility, with funding
from the DOE. It is an open-source code, distributed freely under the
terms of the GNU Public License (GPL), or sometimes by request under the
terms of the GNU Lesser General Public License (LGPL).

The primary developers of SPARTA are Steve Plimpton [http://www.sandia.gov/~sjplimp], and Michael Gallis who can
be contacted at sjplimp,magalli at sandia.gov. The SPARTA WWW Site [http://sparta.sandia.gov] at http://sparta.sandia.gov has more
information about the code and its uses.

The SPARTA documentation is organized into the following sections. If
you find errors or omissions in this manual or have suggestions for
useful information to add, please send an email to the developers so we
can improve the SPARTA documentation.

Once you are familiar with SPARTA, you may want to bookmark this page since it gives quick access to
documentation for all SPARTA commands.

Contents:

	1. Introduction
	1.1. What is SPARTA

	1.2. SPARTA features

	1.3. Grids and surfaces in SPARTA

	1.4. Open source distribution

	1.5. Acknowledgments and citations

	2. Getting Started
	2.1. What’s in the SPARTA distribution

	2.2. Making SPARTA

	2.3. Making SPARTA with optional packages

	2.4. Building SPARTA as a library

	2.5. Running SPARTA

	2.6. Command-line options

	2.7. SPARTA screen output

	3. Commands
	3.1. SPARTA input script

	3.2. Parsing rules

	3.3. Input script structure

	3.4. Commands listed by category

	3.5. Individual commands

	4. Packages
	4.1. FFT package

	4.2. KOKKOS package

	5. Accelerating SPARTA performance
	5.1. Measuring performance

	5.2. Packages with optimized styles

	5.3. KOKKOS package

	6. How-to discussions
	6.1. 2d simulations

	6.2. Axisymmetric simulations

	6.3. Running multiple simulations from one input script

	6.4. Output from SPARTA (stats, dumps, computes, fixes, variables)

	6.5. Visualizing SPARTA snapshots

	6.6. Library interface to SPARTA

	6.7. Coupling SPARTA to other codes

	6.8. Details of grid geometry in SPARTA

	6.9. Details of surfaces in SPARTA

	6.10. Restarting a simulation

	6.11. Using the ambipolar approximation

	6.12. Using multiple vibrational energy levels

	6.13. Surface elements: explicit, implicit, distributed

	6.14. Implicit surface ablation

	6.15. Transparent surface elements

	7. Example problems

	8. Performance & scalability

	9. Additional tools
	9.1. dump2cfg tool

	9.2. dump2xyz tool

	9.3. grid_refine tool

	9.4. implicit_grid tool

	9.5. jagged tools

	9.6. log2txt tool

	9.7. logplot tool

	9.8. paraview tools

	9.9. stl2surf tool

	9.10. surf_create tool

	9.11. surf_transform tool

	10. Modifying & extending SPARTA
	10.1. Compute styles

	10.2. Fix styles

	10.3. Region styles

	10.4. Collision styles

	10.5. Surface collision styles

	10.6. Chemistry styles

	10.7. Dump styles

	10.8. Input script commands

	11. Python interface to SPARTA
	11.1. Building SPARTA as a shared library

	11.2. Installing the Python wrapper into Python

	11.3. Extending Python with MPI to run in parallel

	11.4. Testing the Python-SPARTA interface

	11.5. Using SPARTA from Python

	11.6. Example Python scripts that use SPARTA

	12. Errors
	12.1. Common problems

	12.2. Reporting bugs

	12.3. Error & warning messages

	13. Future and history
	13.1. Coming attractions

	13.2. Past versions

1. Introduction

These sections provide an overview of what SPARTA can do, describe what
it means for SPARTA to be an open-source code, and acknowledge the
funding and people who have contributed to SPARTA.

	What is SPARTA

	SPARTA features

	Grids and surfaces in SPARTA

	Open source distribution

	Acknowledgments and citations

1.1. What is SPARTA

SPARTA is a Direct Simulation Montel Carlo code that models rarefied
gases, using collision, chemistry, and boundary condition models. It
uses a hierarchical Cartesian grid to track and group particles for 3d
or 2d or axisymmetric models. Objects emedded in the gas are represented
as triangulated surfaces and cut through grid cells.

For examples of SPARTA simulations, see the SPARTA WWW Site [http://sparta.sandia.gov].

SPARTA runs efficiently on single-processor desktop or laptop machines,
but is designed for parallel computers. It will run on any parallel
machine that compiles C++ and supports the
MPI [http://www-unix.mcs.anl.gov/mpi] message-passing library. This
includes distributed- or shared-memory parallel machines as well as
commodity clusters.

SPARTA can model systems with only a few particles up to millions or
billions. See performance for information on
SPARTA performance and scalability, or the Benchmarks section of the
SPARTA WWW Site [http://sparta.sandia.gov].

SPARTA is a freely-available open-source code, distributed under the
terms of the GNU Public License [http://www.gnu.org/copyleft/gpl.html], or sometimes by
request under the terms of the GNU Lesser General Public License (LGPL) [https://www.gnu.org/licenses/lgpl-3.0.html], which means you can use or modify the code however you wish. The only restrictions imposed by the GPL or LGPL are on how you distribute the code further. See open-source below for a
brief discussion of the open-source philosophy.

SPARTA is designed to be easy to modify or extend with new capabilities,
such as new collision or chemistry models, boundary conditions, or
diagnostics. See Section 10 for more details.

SPARTA is written in C++ which is used at a hi-level to structure the
code and its options in an object-oriented fashion. The kernel
computations use simple data structures and C-like code for effciency.
So SPARTA is really written in an object-oriented C style.

SPARTA was developed with internal funding at Sandia National Laboratories [http://www.sandia.gov], a US Department of Energy lab.
See Section 1.5 below for more information on SPARTA
funding and individuals who have contributed to SPARTA.

1.2. SPARTA features

This section highlights SPARTA features, with links to specific commands
which give more details. The next section illustrates the
kinds of grid geometries and surface definitions which SPARTA supports.

If SPARTA doesn’t have your favorite collision model, boundary
condition, or diagnostic, see Section 10 of
the manual, which describes how it can be added to SPARTA.

1.2.1. General features

	runs on a single processor or in parallel

	distributed-memory message-passing parallelism (MPI)

	spatial-decomposition of simulation domain for parallelism

	open-source distribution

	highly portable C++

	optional libraries used: MPI

	easy to extend with new features and
functionality

	runs from an input script

	syntax for defining and using variables and formulas

	syntax for looping over runs and breaking out of
loops

	run one or multiple simulations simultaneously (in parallel) from one script

	build as library, invoke SPARTA thru
library interface or provided
Python wrapper.

	couple with other codes: SPARTA
calls other code, other code calls SPARTA, umbrella code calls both

1.2.2. Models

	3d or 2d or
2d-axisymmetric domains

	variety of global boundary conditions

	create particles within flow volume

	emit particles from simulation box faces due to flow properties

	emit particles from simulation box faces due to profile defined in file

	emit particles from surface elements due to normal and flow properties

	ambipolar approximation for ionized plasmas

1.2.3. Geometry

	Cartesian, hierarchical grids with multiple levels of
local refinement

	create grid from input script or read from
file

	embed triangulated (3d) or line-segmented (2d) surfaces in grid,
read in from file

1.2.4. Gas-phase collisions and chemistry

	collisions between all particles or pairs of species groups within
grid cells

	collision models: VSS (variable soft sphere), VHS
(variable hard sphere), HS (hard sphere)

	chemistry models: TCE, QK

1.2.5. Surface collisions and chemistry

	for surface elements or global simulation box
boundaries

	collisions: specular or diffuse

	reactions

1.2.6. Performance

	grid cell weighting of particles

	adaptation of the grid cells between runs

	on-the-fly adaptation of the grid cells

	static load-balancing of grid cells or particles

	dynamic load-balancing of grid cells or particles

1.2.7. Diagnostics

	global boundary statistics

	per grid cell statistics

	per surface element statistics

	time-averaging of global
grid, surface statistics

1.2.8. Output

	log file of statistical info

	dump files (text or binary) of per particle, per grid cell, per surface element values

	binary restart files

	on-the-fly rendered images and movies of particles, grid cells, surface elements

1.2.9. Pre- and post-processing

	Various pre- and post-processing serial tools are packaged with
SPARTA; see Section 9 of the manual.

	Our group has also written and released a separate toolkit called
Pizza.py [http://pizza.sandia.gov] which provides tools for doing
setup, analysis, plotting, and visualization for SPARTA simulations.
Pizza.py is written in Python [http://www.python.org] and is
available for download from the Pizza.py WWW site [http://pizza.sandia.gov].

1.3. Grids and surfaces in SPARTA

SPARTA overlays a grid over the simulation domain which is used to track
particles and to co-locate particles in the same grid cell for
performing collision and chemistry operations. SPARTA uses a Cartesian
hierarchical grid. Cartesian means that the faces of a grid cell are
aligned with the Cartesian xyz axes. Hierarchical means that individual
grid cells can be sub-divided into smaller cells, recursively. This
allows for flexible grid cell refinement in any region of the simulation
domain. E.g. around a surface, or in a high-density region of the gas
flow.

An example 2d hierarchical grid is shown in the diagram, for a circular
surface object (in red) with the grid refined on the upwind side of the
object (flow from left to right).

[image: image0]

Objects represented with a surface triangulation (line segments in 2d)
can also be read in to define objects which particles flow around.
Individual surface elements are assigned to grid cells they intersect
with, so that particle/surface collisions can be efficiently computed.

As an example, here is coarsely triangulated representation of the space
shuttle (only 616 triangles!), which could be embedded in a simulation
box. Click on the image for a larger picture.

[image: image1]

See Details of grid geometry in SPARTA and Details of surfaces in SPARTA for more details of both the grids and surface objects that SPARTA supports and how to define them.

1.4. Open source distribution

SPARTA comes with no warranty of any kind. As each source file states in
its header, it is a copyrighted code that is distributed free-of-
charge, under the terms of the GNU Public License [http://www.gnu.org/copyleft/gpl.html] (GPL). This is often
referred to as open-source distribution - see
www.gnu.org [http://www.gnu.org] or
www.opensource.org [http://www.opensource.org] for more details. The
legal text of the GPL is in the LICENSE file that is included in the
SPARTA distribution.

Here is a summary of what the GPL means for SPARTA users:

	Anyone is free to use, modify, or extend SPARTA in any way they choose, including for commercial purposes.

	If you distribute a modified version of SPARTA, it must remain
open-source, meaning you distribute it under the terms of the GPL.
You should clearly annotate such a code as a derivative version of SPARTA.

	If you release any code that includes SPARTA source code, then it must also
be open-sourced, meaning you distribute it under the terms of the GPL.

	If you give SPARTA files to someone else, the GPL LICENSE file and
source file headers (including the copyright and GPL notices) should
remain part of the code.

In the spirit of an open-source code, these are various ways you can
contribute to making SPARTA better. You can send email to the
developers [http://sparta.sandia.gov/authors.html] on any of these
topics.

	Point prospective users to the SPARTA WWW Site [http://sparta.sandia.gov]. Mention it in talks or link to it
from your WWW site.

	If you find an error or omission in this manual or on the SPARTA WWW Site [http://sparta.sandia.gov], or have a suggestion for
something to clarify or include, send an email to the
developers [http://sparta.sandia.gov/authors.html].

	If you find a bug, error-common describes how to report it.

	If you publish a paper using SPARTA results, send the citation (and
any cool pictures or movies) to add to the Publications, Pictures,
and Movies pages of the SPARTA WWW Site [http://sparta.sandia.gov], with links and attributions back
to you.

	The tools sub-directory of the SPARTA distribution has various
stand-alone codes for pre- and post-processing of SPARTA data. More
details are given in Additional tools. If you write
a new tool that others will find useful, it can be added to the
SPARTA distribution.

	SPARTA is designed to be easy to extend with new code for features
like boundary conditions, collision or chemistry models, diagnostic
computations, etc. Modifying & extending SPARTA of the manual
gives details. If you add a feature of general interest, it can be
added to the SPARTA distribution.

	The Benchmark page of the SPARTA WWW Site [http://sparta.sandia.gov] lists SPARTA performance on
various platforms. The files needed to run the benchmarks are part of
the SPARTA distribution. If your machine is sufficiently different
from those listed, your timing data can be added to the page.

	Cash. Small denominations, unmarked bills preferred. Paper sack OK.
Leave on desk. VISA also accepted. Chocolate chip cookies encouraged.

1.5. Acknowledgments and citations

SPARTA development has been funded by the US Department of Energy [http://www.doe.gov] (DOE).

If you use SPARTA results in your published work, please cite the
paper(s) listed under the Citing SPARTA link [http://sparta.sandia.gov/papers.html] of the SPARTA WWW page, and include a pointer to the SPARTA WWW Site [http://sparta.sandia.gov] (http://sparta.sandia.gov):

The Publications link [http://sparta.sandia.gov/papers.html] on the
SPARTA WWW page lists papers that have cited SPARTA. If your paper is
not listed there, feel free to send us the info. If the simulations in
your paper produced cool pictures or animations, we’ll be pleased to add
them to the Pictures [http://sparta.sandia.gov/pictures.html] or
Movies [http://sparta.sandia.gov/movies.html] pages of the SPARTA
WWW site.

The core group of SPARTA developers is at Sandia National Labs:

	Steve Plimpton, sjplimp at sandia.gov

	Michael Gallis, magalli at sandia.gov

2. Getting Started

This section describes how to build and run SPARTA, for both new and
experienced users.

	What’s in the SPARTA distribution

	Making SPARTA

	Making SPARTA with optional packages

	Building SPARTA as a library

	Running SPARTA

	Command-line options

	SPARTA screen output

2.1. What’s in the SPARTA distribution

When you download SPARTA you will need to unzip and untar the downloaded
file with the following commands:

gunzip sparta*.tar.gz
tar xvf sparta*.tar

This will create a SPARTA directory containing two files and several
sub-directories:

	README

	text file

	LICENSE

	the GNU General Public License (GPL)

	bench

	benchmark problems

	data

	files with species, collision, and reaction parameters

	doc

	documentation

	examples

	simple test problems

	python

	Python wrapper

	src

	source files

	tools

	pre- and post-processing tools

2.2. Making SPARTA

This section has the following sub-sections:

	Read this first

	Steps to build a SPARTA executable using make

	Steps to build a SPARTA executable using CMake

	Errors that can occur when making SPARTA

	Additional build tips using make

	Additional build tips using CMake

	Building for a Mac

	Building for Windows

2.2.1. Read this first

Building SPARTA can be non-trivial. You may need to edit a makefile,
there are compiler options to consider, additional libraries can be used
(MPI, JPEG).

Please read this section carefully. If you are not comfortable with
cmake, makefiles, or building codes on a Linux platform, or running an MPI job
on your machine, please find a local expert to help you.

If you have a build problem that you are convinced is a SPARTA issue
(e.g. the compiler complains about a line of SPARTA source code), then
please send an email to the
developers [http://sparta.sandia.gov/authors.html].

If you succeed in building SPARTA on a new kind of machine, for which
there isn’t a similar Makefile in the src/MAKE directory or .cmake file
in cmake/presets, send it to the
developers [http://sparta.sandia.gov/authors.html] and we’ll include
it in future SPARTA releases.

2.2.2. Steps to build a SPARTA executable using make

2.2.2.1. Step 0

The src directory contains the C++ source and header files for SPARTA.
It also contains a top-level Makefile and a MAKE sub-directory with
low-level Makefile.* files for many machines. From within the src
directory, type “make” or “gmake”. You should see a list of available
choices. If one of those is the machine and options you want, you can
type a command like:

make g++
or
gmake mac

Note that on a multi-core platform you can launch a parallel make, by using the “-j” switch with the make command, which will build SPARTA more quickly.

If you get no errors and an executable like spa_g++ or spa_mac is
produced, you’re done; it’s your lucky day.

Note that by default none of the SPARTA optional packages are installed.
To build SPARTA with optional packages, see this section
below.

2.2.2.2. Step 1

If Step 0 did not work, you will need to create a low-level Makefile for
your machine, like Makefile.foo. Copy an existing src/MAKE/Makefile.*
as a starting point. The only portions of the file you need to edit are
the first line, the “compiler/linker settings” section, and the
“SPARTA-specific settings” section.

2.2.2.3. Step 2

Change the first line of src/MAKE/Makefile.foo to list the word “foo”
after the “#”, and whatever other options it will set. This is the line
you will see if you just type “make”.

2.2.2.4. Step 3

The “compiler/linker settings” section lists compiler and linker
settings for your C++ compiler, including optimization flags. You can
use g++, the open-source GNU compiler, which is available on all Linux
systems. You can also use mpicc which will typically be available if MPI
is installed on your system, though you should check which actual
compiler it wraps. Vendor compilers often produce faster code. On boxes
with Intel CPUs, we suggest using the commercial Intel icc compiler,
which can be downloaded from Intel’s compiler site [http://www.intel.com/software/products/noncom].

If building a C++ code on your machine requires additional libraries,
then you should list them as part of the LIB variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a
dependency list for a source file. This speeds re-compilation when
source (.cpp) or header (.h) files are edited. Some compilers do not
support dependency file creation, or may use a different switch than -D.
GNU g++ works with -D. Note that when you build SPARTA for the first
time on a new platform, a long list of *.d files will be printed out
rapidly. This is not an error; it is the Makefile doing its normal
creation of dependencies.

2.2.2.5. Step 4

The “system-specific settings” section has several parts. Note that if
you change any -D setting in this section, you should do a full
re-compile, after typing “make clean”, which will describe different
clean options.

The SPA_INC variable is used to include options that turn on ifdefs
within the SPARTA code. The options that are currently recognized are:

	-DSPARTA_GZIP

	-DSPARTA_JPEG

	-DSPARTA_PNG

	-DSPARTA_FFMPEG

	-DSPARTA_MAP

	-DSPARTA_UNORDERED_MAP

	-DSPARTA_SMALL

	-DSPARTA_BIG

	-DSPARTA_BIGBIG

	-DSPARTA_LONGLONG_TO_LONG

The read_data and dump commands will read/write gzipped files if you
compile with -DSPARTA_GZIP. It requires that your Linux support the
“popen” command.

If you use -DSPARTA_JPEG and/or -DSPARTA_PNG, the dump command will be able to write out JPEG and/or PNG image files respectively. If not, it will only be able to write out PPM
image files. For JPEG files, you must also link SPARTA with a JPEG
library, as described below. For PNG files, you must also link SPARTA
with a PNG library, as described below.

If you use -DSPARTA_FFMPEG, the dump movie command
will be available to support on-the-fly generation of rendered movies
the need to store intermediate image files. It requires that your
machines supports the “popen” function in the standard runtime library
and that an FFmpeg executable can be found by SPARTA during the run.

If you use -DSPARTA_MAP, SPARTA will use the STL map class for hash
tables. This is less efficient than the unordered map class which is not
yet supported by all C++ compilers. If you use -DSPARTA_UNORDERED_MAP,
SPARTA will use the unordered_map class for hash tables and will assume
it is part of the STL (e.g. this works for Clang++). The default is to
use the unordered map class from the “tri1” extension to the STL which
is supported by most compilers. So only use either of these options if
the build complains that unordered maps are not recognized.

Use at most one of the -DSPARTA_SMALL, -DSPARTA_BIG, -DSPARTA_BIGBIG
settings. The default is -DSPARTA_BIG. These refer to use of 4-byte
(small) vs 8-byte (big) integers within SPARTA, as described in
src/spatype.h. The only reason to use the BIGBIG setting is if you have
a regular grid with more than ~2 billion grid cells or a hierarchical
grid with enough levels that grid cell IDs cannot fit in a 32-bit
integer. In either case, SPARTA will generate an error message for “Cell
ID has too many bits”. See Details of grid geometry in SPARTA of the manual for details on how cell IDs are formatted. The only reason
to use the SMALL setting is if your machine does not support 64-bit
integers.

In all cases, the size of problem that can be run on a per-processor
basis is limited by 4-byte integer storage to about 2 billion particles
per processor (2^31), which should not normally be a restriction since
such a problem would have a huge per-processor memory and would run very
slowly in terms of CPU secs/timestep.

The -DSPARTA_LONGLONG_TO_LONG setting may be needed if your system or
MPI version does not recognize “long long” data types. In this case a
“long” data type is likely already 64-bits, in which case this setting
will use that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options
can make for faster parallel FFTs on some platforms. The -DPACK_ARRAY
setting is the default. See the compute fft/grid command for info about FFTs. See
Step 6 below for info about building SPPARKS with an FFT library.

2.2.2.6. Step 5

The 3 MPI variables are used to specify an MPI library to build SPARTA
with.

If you want SPARTA to run in parallel, you must have an MPI library
installed on your platform. If you use an MPI-wrapped compiler, such as
“mpicc” to build, you should be able to leave these 3 variables blank;
the MPI wrapper knows where to find the needed files. If not, and MPI is
installed on your system in the usual place (under /usr/local), you also
may not need to specify these 3 variables. On some large parallel
machines which use “modules” for their compile/link environements, you
may simply need to include the correct module in your build environment.
Or the parallel machine may have a vendor-provided MPI which the
compiler has no trouble finding.

Failing this, with these 3 variables you can specify where the mpi.h
file is found (via MPI_INC), and the MPI library file is found (via
MPI_PATH), and the name of the library file (via MPI_LIB). See
Makefile.serial for an example of how this can be done.

If you are installing MPI yourself, we recommend MPICH 1.2 or 2.0 or
OpenMPI. MPICH can be downloaded from the Argonne MPI site [http://www.mpich.org]. OpenMPI can be downloaded from the
OpenMPI site [http://www.open-mpi.org]. If you are running on a big
parallel platform, your system admins or the vendor should have already
installed a version of MPI, which will be faster than MPICH or OpenMPI,
so find out how to build and link with it. If you use MPICH or OpenMPI,
you will have to configure and build it for your platform. The MPI
configure script should have compiler options to enable you to use the
same compiler you use for the SPARTA build, which can avoid problems
that can arise when linking SPARTA to the MPI library.

If you just want to run SPARTA on a single processor, you can use the
dummy MPI library provided in src/STUBS, since you don’t need a true MPI
library installed on your system. You will also need to build the STUBS
library for your platform before making SPARTA itself. From the src
directory, type make mpi-stubs, or from within the STUBS dir, type
“make” and it should create a libmpi.a suitable for linking to SPARTA.
If this build fails, you will need to edit the STUBS/Makefile for your
platform.

The file STUBS/mpi.cpp provides a CPU timer function called MPI_Wtime()
that calls gettimeofday() . If your system doesn’t support
gettimeofday() , you’ll need to insert code to call another timer. Note
that the ANSI-standard function clock() function rolls over after an
hour or so, and is therefore insufficient for timing long SPARTA
simulations.

2.2.2.7. Step 6

The 3 FFT variables allow you to specify an FFT library which SPARTA
uses (for performing 1d FFTs) when built with its FFT package, which
contains commands that invoke FFTs.

SPARTA supports various open-source or vendor-supplied FFT libraries for
this purpose. If you leave these 3 variables blank, SPARTA will use the
open-source KISS FFT library [http://kissfft.sf.net], which is
included in the SPARTA distribution. This library is portable to all
platforms and for typical SPARTA simulations is almost as fast as FFTW
or vendor optimized libraries. If you are not including the FFT package
in your build, you can also leave the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC
setting by a switch of the form -DFFT_XXX. Recommended values for XXX
are: MKL or FFTW3. FFTW2 and NONE are supported as legacy options.
Selecting -DFFT_FFTW will use the FFTW3 library and -DFFT_NONE will use
the KISS library described above. described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables,
so the compiler and linker can find the needed FFT header and library
files. Note that on some large parallel machines which use “modules” for
their compile/link environements, you may simply need to include the
correct module in your build environment. Or the parallel machine may
have a vendor-provided FFT library which the compiler has no trouble
finding.

FFTW is a fast, portable library that should also work on any platform.
You can download it from www.fftw.org [http://www.fftw.org]. Both
the legacy version 2.1.X and the newer 3.X versions are supported as
-DFFT_FFTW2 or -DFFT_FFTW3. Building FFTW for your box should be as
simple as ./configure; make. Note that on some platforms FFTW2 has been
pre-installed, and uses renamed files indicating the precision it was
compiled with, e.g. sfftw.h, or dfftw.h instead of fftw.h. In this case,
you can specify an additional define variable for FFT_INC called
-DFFTW_SIZE, which will select the correct include file. In this case,
for FFT_LIB you must also manually specify the correct library, namely
-lsfftw or -ldfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will
use single-precision FFTs, which can speed-up the calculation,
particularly in parallel or on GPUs. Fourier transform and related PPPM
operations are somewhat insensitive to floating point truncation errors
and thus do not always need to be performed in double precision. Using
the -DFFT_SINGLE setting trades off a little accuracy for reduced memory
use and parallel communication costs for transposing 3d FFT data.

2.2.2.8. Step 7

The 3 JPG variables allow you to specify a JPEG and/or PNG library which
SPARTA uses when writing out JPEG or PNG files via the dump image command. These can be left blank if you do
not use the -DSPARTA_JPEG or -DSPARTA_PNG switches discussed above in
Step 4, since in that case JPEG/PNG output will be disabled.

A standard JPEG library usually goes by the name libjpeg.a or libjpeg.so
and has an associated header file jpeglib.h. Whichever JPEG library you
have on your platform, you’ll need to set the appropriate JPG_INC,
JPG_PATH, and JPG_LIB variables, so that the compiler and linker can
find it.

A standard PNG library usually goes by the name libpng.a or libpng.so
and has an associated header file png.h. Whichever PNG library you have
on your platform, you’ll need to set the appropriate JPG_INC, JPG_PATH,
and JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on
your machine, you may not need to set these variables.

2.2.2.9. Step 8

Note that by default none of the SPARTA optional packages are installed.
To build SPARTA with optional packages, see this section
below, before proceeding to Step 9.

2.2.2.10. Step 9

That’s it. Once you have a correct Makefile.foo, and you have pre-built
any other needed libraries (e.g. MPI), all you need to do from the src
directory is type one of the following:

make foo
make -j N foo
gmake foo
gmake -j N foo

The -j or -j N switches perform a parallel build which can be much
faster, depending on how many cores your compilation machine has. N is
the number of cores the build runs on.

You should get the executable spa_foo when the build is complete.

2.2.3. Steps to build a SPARTA executable using CMake

2.2.3.1. Step 0

Please review https://github.com/sparta/sparta/blob/master/BUILD_CMAKE.md and ensure that
CMake version 3.10.0 or greater is installed:

which cmake
which cmake3
cmake --version

On clusters and supercomputers one can use modules to load cmake:

module avail cmake
module load <CMAKE>

On Linux one may use apt, yum, or pacman to install cmake.

On Mac one may use brew or macports to install cmake.

2.2.3.2. Step 1

The cmake directory contains the CMake source files for SPARTA. Create a build
directory and from within the build directory, run cmake:

mkdir build
cd build
cmake -LH -DSPARTA_MACHINE=tutorial /path/to/sparta/cmake

This will generate the default Makefiles and print the SPARTA CMake options. To
list the generated targets, do:

make help

Now you can try to build the SPARTA binaries with:

make

If everything works, an executable named spa_tutorial and a library named
libsparta.a will be produced in build/src.

2.2.3.3. Step 2

If Step 1 did not work, see if you can use any system presets from
/path/to/sparta/cmake/presets. To select a preset:

cd build

Clear the CMake files
rm -rf CMake*

cmake -C /path/to/sparta/cmake/presets/<NAME>.cmake -DSPARTA_MACHINE=tutorial /path/to/sparta/cmake
make

2.2.3.4. Step 3

If Step 2 did not work, look at cmake -LH for a list of SPARTA CMake options and their
meaning, then modify one or more of those options by doing:

cd build
rm -rf CMake*
cmake -C /path/to/sparta/cmake/presets/<NAME>.cmake -D<OPTION_NAME>=<VALUE> /path/to/sparta/cmake
make

where <OPTION_NAME> and <VALUE> correspond to valid option value pairs listed by
cmake -LH. For the SPARTA_DEFAULT_CXX_COMPILE_FLAGS option, see Step 4.

For a full list of CMake option value pairs, see cmake -LAH. The most relevant
CMake options (with example values) for our purposes here are:

-DCMAKE_C_COMPILER=gcc
-DCMAKE_CXX_COMPILER=/usr/local/bin/g++
-DCMAKE_CXX_FLAGS=-O3

If your cmake command line is getting too long, consider placing it in a bash
script and escaping newlines. For example:

cmake \
-C /path/to/sparta/cmake/presets/<NAME>.cmake \
-D -D<OPTION_NAME>=<VALUE> \
/path/to/sparta/cmake

2.2.3.5. Step 4

The SPARTA_DEFAULT_CXX_COMPILE_FLAGS option passes flags to the compiler when
building object files. Note that if you change any -D setting in this section,
you should do a full re-compile, after typing “make clean”.

The SPARTA_DEFAULT_CXX_COMPILE_FLAGS option is typically used to include options
that turn on ifdefs within the SPARTA code. The options that are currently recogized are:

-DSPARTA_GZIP
-DSPARTA_JPEG
-DSPARTA_PNG
-DSPARTA_FFMPEG
-DSPARTA_MAP
-DSPARTA_UNORDERED_MAP
-DSPARTA_SMALL
-DSPARTA_BIG
-DSPARTA_BIGBIG
-DSPARTA_LONGLONG_TO_LONG :ul

The read_data and dump commands will read/write gzipped files if you
compile with -DSPARTA_GZIP. It requires that your Linux support the
“popen” command.

If you use -DSPARTA_JPEG and/or -DSPARTA_PNG, the dump image command
will be able to write out JPEG and/or PNG
image files respectively. If not, it will only be able to write out
PPM image files. For JPEG files, you must also link SPARTA with a
JPEG library, as described below. For PNG files, you must also link
SPARTA with a PNG library, as described below.

If you use -DSPARTA_FFMPEG, the dump movie command
will be available to support on-the-fly generation of rendered movies
the need to store intermediate image files. It requires that your
machines supports the “popen” function in the standard runtime library
and that an FFmpeg executable can be found by SPARTA during the run.

If you use -DSPARTA_MAP, SPARTA will use the STL map class for hash
tables. This is less efficient than the unordered map class which is
not yet supported by all C++ compilers. If you use
-DSPARTA_UNORDERED_MAP, SPARTA will use the unordered_map class for
hash tables and will assume it is part of the STL (e.g. this works for
Clang++). The default is to use the unordered map class from the
“tri1” extension to the STL which is supported by most compilers. So
only use either of these options if the build complains that unordered
maps are not recognized.

Use at most one of the -DSPARTA_SMALL, -DSPARTA_BIG, -DSPARTA_BIGBIG
settings. The default is -DSPARTA_BIG. These refer to use of 4-byte
(small) vs 8-byte (big) integers within SPARTA, as described in
src/spatype.h. The only reason to use the BIGBIG setting is if you
have a regular grid with more than ~2 billion grid cells or a
hierarchical grid with enough levels that grid cell IDs cannot fit in
a 32-bit integer. In either case, SPARTA will generate an error
message for “Cell ID has too many bits”. See Section 6.8 of the manual for details on how cell
IDs are formatted. The only reason to use the SMALL setting is if
your machine does not support 64-bit integers.

In all cases, the size of problem that can be run on a per-processor
basis is limited by 4-byte integer storage to about 2 billion
particles per processor (2^31), which should not normally be a
restriction since such a problem would have a huge per-processor
memory and would run very slowly in terms of CPU secs/timestep.

The -DSPARTA_LONGLONG_TO_LONG setting may be needed if your system or
MPI version does not recognize “long long” data types. In this case a
“long” data type is likely already 64-bits, in which case this setting
will use that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY
options can make for faster parallel FFTs on some platforms. The
-DPACK_ARRAY setting is the default. See the compute fft/grid command for info about FFTs.
See STEP ??? below for info about building SPPARKS with an FFT library.

2.2.3.6. Step 5

This step is optional. Once you get Step 3 and Step 4 working by modifying the
options to the cmake command, try setting the same options in
/path/to/sparta/cmake/presets/<NEW>.cmake by copying
/path/to/sparta/cmake/presets/<NAME>.cmake and modifying the cmake
source code. Note that the CMake cache is sticky and will only evict a
cached option value pair if you use -D or the FORCE argument to CMake’s set
routine.

Now just do:

cd build
rm -rf CMake*
cmake -C /path/to/sparta/cmake/presets/<NEW>.cmake /path/to/sparta/cmake
make

consider sharing and vetting <NEW>.cmake by opening a pull request at
https://github.com/sparta/sparta/.

2.2.3.7. Step 6

This step explains how to enable and select MPI in the SPARTA CMake
configuration. There may already be a preset in
/path/to/sparta/cmake/presets that selects the correct MPI installation.

By default, SPARTA configures with MPI enabled and cmake will print which MPI
was selected. To build serial binaries, use SPARTA’s MPI_STUBS package:

cmake -DPKG_MPI_STUBS=ON /path/to/sparta/cmake

You may want a different MPI installation than CMake finds. CMake uses module
files such as FindMPI.cmake to handle wiring in a given installation of a
library and its headers. If you’re on a cluster or supercomputer, use module
before running cmake so that cmake finds the MPI installation you’d like to
use:

Show which modules are loaded
module list

Show which modules are available
module avail

module load <MPI> :pre

On Linux one may use apt, yum, or pacman to install MPI.

On Mac one may use brew or macports to install MPI.

Verify that cmake found the correct MPI installation:

cd build
rm -rf CMake*

cmake should print "Found MPI*" strings
cmake [options] /path/to/sparta/cmake :pre

Note that if the preset file you’re using enables PKG_MPI_STUBS, MPI will not be
searched for unless you explicitly disable PKG_MPI_STUBS in the preset file.

If you’d like to use a custom MPI installation or cmake is not locating the MPI
installation you’ve selected via the module command or package manager, try
export MPI_ROOT=/path/to/mpi/install before running cmake. Otherwise, please see
https://cmake.org/cmake/help/v3.10/module/FindMPI.html#variables-for-locating-mpi.
Note that this documentation link is for CMake version 3.10.

2.2.3.8. Step 7

You may select between three thiry party libraries (TPL) for FFT which SPARTA uses when
configured with cmake -DFFT={FFTW2,FFTW3,MKL}. SPARTA also provides a FFT
package which can be selected with cmake -DPKG_FFT=ON.

You may need to install the FFT TPL you’re interested in using. If you’re on a
cluster or supercomputer, use module before running cmake so that cmake finds
the FFT installation you’d like to use:

Show which modules are loaded
module list

Show which modules are available
module avail

module load <FFT> :pre

On Linux one may use apt, yum, or pacman to install FFT.

On Mac one may use brew or macports to install FFT.

Verify that cmake found the correct MPI installation:

cd build
rm -rf CMake*

cmake should print "Found FFT*" strings
cmake [options] /path/to/sparta/cmake :pre

Note that if the preset file you’re using enables PKG_FFT, FFT will not be
searched for unless you explicitly disable PKG_FFT in the preset file.

If you’d like to use a custom FFT installation or cmake is not locating the FFT
installation you’ve selected via the module command or package manager, try
export FFT_ROOT=/path/to/fft/install before running cmake. Otherwise, please
open an issue at https://github.com/sparta/sparta/issues.

2.2.3.9. Step 8

You may select between 2 TPLs, JPEG or PNG, for writing out JPEG or PNG files
via the dump image command. To select a TPL, use:

cmake -DBUILD_JPEG=ON /path/to/sparta/cmake

or:

cmake -DBUILD_PNG=ON /path/to/sparta/cmake

If you’d like to use a custom jpeg or png installation, please see
https://cmake.org/cmake/help/v3.10/module/FindJPEG.html or
https://cmake.org/cmake/help/v3.10/module/FindPNG.html. Note that these
documentation links are for CMake version 3.10.

2.2.3.10. Step 9

By default, none of the SPARTA optional packages are installed. To build SPARTA
with optional packages, use:

cmake -DPKG_XXX=ON /path/to/sparta/cmake

Where XXX is the package to enable. For a full list of optional packages, see:

cmake -LH /path/to/sparta/cmake

2.2.3.11. Step 10

Once you have a correct cmake command line or the <NAME>.cmake preset file, just
do:

cd build
cmake [OPTIONS] /path/to/sparta/cmake

or:

cd build
cmake -C /path/to/sparta/cmake/presets/<NAME>.cmake -DSPARTA_MACHINE=tutorial /path/to/sparta/cmake

make -j N

The -j or -j N switches perform a parallel build which can be much faster,
depending on how many cores your compilation machine has. N is the number of
cores the build runs on.

You should get build/src/spa_tutorial and build/src/libsparta.a.

2.2.4. Errors that can occur when making SPARTA

Important

If an error occurs when building SPARTA, the compiler or linker will state very explicitly what the problem is. The error message should give you a hint as to which of the steps above has failed, and what you need to do in order to fix it. Building a code with a Makefile is a very logical process. The compiler and linker need to find the appropriate files and those files need to be compatible with SPARTA source files. When a make fails, there is usually a very simple reason, which you or a local expert will need to fix.

Here are two non-obvious errors that can occur:

	If the make command breaks immediately with errors that indicate it
can’t find files with a “*” in their names, this can be because your
machine’s native make doesn’t support wildcard expansion in a makefile.
Try gmake instead of make. If that doesn’t work, try using a -f switch
with your make command to use a pre-generated Makefile.list which
explicitly lists all the needed files, e.g.

make makelist
make -f Makefile.list g++
gmake -f Makefile.list mac

The first “make” command will create a current Makefile.list with all
the file names in your src dir. The 2nd “make” command (make or gmake)
will use it to build SPARTA.

	If you get an error that says something like ‘identifier “atoll” is
undefined’, then your machine does not support “long long” integers. Try
using the -DSPARTA_LONGLONG_TO_LONG setting described above in Step 4.

2.2.5. Additional build tips using make

	Building SPARTA for multiple platforms.

	You can make SPARTA for multiple platforms from the same src directory.
Each target creates its own object sub-directory called Obj_name where it stores the system-specific *.o files.

	Cleaning up.

	Typing “make clean-all” or “make clean-foo” will delete *.o object files created when SPARTA is built, for either all builds or for a particular machine.

2.2.6. Additional build tips using CMake

	Building SPARTA for multiple platforms.

	It’s best to build SPARTA for multiple platforms from different build directories. However, each target creates its own spa_TARGET binary and multiple targets can be built from the same build directory. Note that the *.o object files in build/src will reflective of the most recent build configuration. Also note that if BUILD_SHARED_LIBS was enabled, libsparta will be reflective of the most recent build configuration.

	Cleaning up.

	Typing “make clean” will delete all binary files for the most recent build configuration.

2.2.7. Building for a Mac

OS X is BSD Unix, so it should just work. See the Makefile.mac or
cmake/presets/mac.cmake file.

2.2.8. Building for Windows

At some point we may provide a pre-built Windows executable for SPARTA.
Until then you will need to build an executable from source files.

One way to do this is install and use cygwin to build SPARTA with a
standard Linux make or CMake, just as you would on any Linux box.

You can also import the *.cpp and *.h files into Microsoft Visual
Studio. If someone does this and wants to provide project files or other
Windows build tips, please send them to the
developers [http://sparta.sandia.gov/authors.html] and we will
include them in the distribution.

2.3. Making SPARTA with optional packages

This section has the following sub-sections:

	Package basics

	Including/excluding packages with make

	Including/excluding packages with CMake

2.3.1. Package basics

The source code for SPARTA is structured as a set of core files which
are always included, plus optional packages. Packages are groups of
files that enable a specific set of features. For example, the FFT
package which includes a compute fft/grid command and a 2d and 3d FFT library.

For make:

You can see the list of all packages by typing “make package” from
within the src directory of the SPARTA distribution. This also lists
various make commands that can be used to manipulate packages.

For CMake:

You can see the list of all packages by typing “cmake -DSPARTA_LIST_PKGS=ON”
from within the build directory.

If you use a command in a SPARTA input script that is part of a package,
you must have built SPARTA with that package, else you will get an error
that the style is invalid or the command is unknown. Every command’s doc
page specifies if it is part of a package.

2.3.2. Including/excluding packages with make

To use (or not use) a package you must include it (or exclude it) before
building SPARTA. From the src directory, this is typically as simple as:

make yes-fft
make g++

or

make no-fft
make g++

Note

You should NOT include/exclude packages and build SPARTA in a single make command using multiple targets, e.g. make yes-fft g++. This is because the make procedure creates a list of source files that will be out-of-date for the build if the package configuration changes within the same command.

Some packages have individual files that depend on other packages being
included. SPARTA checks for this and does the right thing. I.e.
individual files are only included if their dependencies are already
included. Likewise, if a package is excluded, other files dependent on
that package are also excluded.

If you will never run simulations that use the features in a particular
packages, there is no reason to include it in your build.

When you download a SPARTA tarball, no packages are pre-installed in the
src directory.

Packages are included or excluded by typing make yes-name or make
no-name, where name is the name of the package in lower-case, e.g.
name = fft for the FFT package. You can also type make yes-all, or
make no-all to include/exclude all packages. Type make package to
see all of the package-related make options.

Note

Inclusion/exclusion of a package works by simply moving files back and forth between the main src directory and sub-directories with the package name (e.g. src/FFT or src/KOKKOS), so that the files are seen or not seen when SPARTA is built. After you have included or excluded a package, you must re-build SPARTA.

Additional package-related make options exist to help manage SPARTA
files that exist in both the src directory and in package
sub-directories. You do not normally need to use these commands unless
you are editing SPARTA files.

Typing make package-update or make pu will overwrite src files with
files from the package sub-directories if the package has been included.
It should be used after a patch is installed, since patches only update
the files in the package sub-directory, but not the src files. Typing
make package-overwrite will overwrite files in the package
sub-directories with src files.

Typing make package-status or make ps will show which packages are
currently included. For those that are included, it will list any files
that are different in the src directory and package sub-directory.
Typing make package-diff lists all differences between these files.
Again, type make package to see all of the package-related make
options.

Typing make package-installed or make pi will show which packages are
currently installed in the src directory.

2.3.3. Including/excluding packages with CMake

To use (or not use) a package you must include it (or exclude it)
before building SPARTA. From the build directory, do:

cmake -DPKG_FFT=ON /path/to/sparta/cmake
make -j

or

cmake -DPKG_FFT=OFF /path/to/sparta/cmake
make -j :pre

Some packages have individual files that depend on other packages
being included. SPARTA checks for this and does the right thing.
I.e. individual files are only included if their dependencies are
already included. Likewise, if a package is excluded, other files
dependent on that package are also excluded.

If you will never run simulations that use the features in a
particular packages, there is no reason to include it in your build.

When you download a SPARTA tarball, no packages are pre-installed in
the build/src directory.

Packages are included or excluded by typing cmake -DPKG_NAME=ON or
cmake -DPKG_NAME=OFF, where NAME is the name of the package in upper-case,
e.g. name = FFT for the FFT package. You can also type cmake
-DSPARTA_ENABLE_ALL_PKGS=ON, or cmake -DSPARTA_DISABLE_ALL_PKGS=ON to
include or exclude all packages. Type cmake -DSPARTA_LIST_PKGS=ON to
see all of the package-related CMake options.

NOTE: Inclusion or exclusion of a package works by setting CMake boolean
variables to generate the correct Makefile targets and dependencies. After you
have included or excluded a package, you must re-build SPARTA.

If a SPARTA package has source code changes, simply run “make” to rebuild SPARTA
with these changes.

Typing “cmake” from the build directory will show which packages are currently
included.

2.4. Building SPARTA as a library

SPARTA can be built as either a static or shared library, which can then
be called from another application or a scripting language. See Coupling SPARTA to other codes for more info on coupling SPARTA to
other codes. See Python interface to SPARTA for more info on wrapping and running SPARTA from Python.

The CMake build system will produce the library static of dynamic libsparta
library in build/src.

2.4.1. Static library:

CMake builds sparta as a static library in libsparta.a, by default.

To build SPARTA as a static library (“*.a” file on Linux), type

make foo mode=lib

where foo is the machine name. This kind of library is typically used to
statically link a driver application to SPARTA, so that you can insure
all dependencies are satisfied at compile time. This will use the
ARCHIVE and ARFLAGS settings in src/MAKE/Makefile.foo. The build will
create the file libsparta_foo.a which another application can link to.
It will also create a soft link libsparta.a, which will point to the
most recently built static library.

2.4.2. Shared library:

To build SPARTA as a shared library (“*.so” file on Linux), which can be
dynamically loaded, e.g. from Python, type

make foo mode=shlib

or:

cmake -C /path/to/sparta/cmake/presets/foo.cmake -DBUILD_SHARED_LIBS=ON /path/to/sparta/cmake
make

where foo is the machine name. This kind of library is required when
wrapping SPARTA with Python; see Python interface to SPARTA for details. This will use the
SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo and perform the
build in the directory Obj_shared_foo. This is so that each file can be
compiled with the -fPIC flag which is required for inclusion in a shared
library. The build will create the file libsparta_foo.so which another
application can link to dyamically. It will also create a soft link
libsparta.so, which will point to the most recently built shared
library. This is the file the Python wrapper loads by default.

Note that for a shared library to be usable by a calling program, all
the auxiliary libraries it depends on must also exist as shared
libraries. This will be the case for libraries included with SPARTA,
such as the dummy MPI library in src/STUBS or any package libraries in
lib/packages, since they are always built as shared libraries using the
-fPIC switch. However, if a library like MPI or FFTW does not exist as a
shared library, the shared library build will generate an error. This
means you will need to install a shared library version of the auxiliary
library. The build instructions for the library should tell you how to
do this.

Here is an example of such errors when the system FFTW or provided
lib/colvars library have not been built as shared libraries:

/usr/bin/ld: /usr/local/lib/libfftw3.a(mapflags.o): relocation
R_X86_64_32 against :ref:`.rodata' can not be used when making a shared
object; recompile with -fPIC
/usr/local/lib/libfftw3.a: could not read symbols: Bad value

/usr/bin/ld: ../../lib/colvars/libcolvars.a(colvarmodule.o):
relocation R_X86_64_32 against`pthread_key_create' can not be used
when making a shared object; recompile with -fPIC
../../lib/colvars/libcolvars.a: error adding symbols: Bad value

As an example, here is how to build and install the MPICH library [http://www-unix.mcs.anl.gov/mpi], a popular open-source
version of MPI, distributed by Argonne National Labs, as a shared
library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use sudo make install in place of the last line if you
do not have write privileges for /usr/local/lib. The end result should
be the file /usr/local/lib/libmpich.so.

2.4.3. Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using
the environment variable LD_LIBRARY_PATH.

Using CMake, ensure that CMAKE_INSTALL_PREFIX is set properly and then run “make
-j install” or add build/src to LD_LIBRARY_PATH in your shell’s environment.

Using make, you may wish to copy the file src/libsparta.so or src/libsparta_g++.so (for example) to a place the system can find it by default, such as /usr/local/lib, or you may wish to add the SPARTA src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to programs that use it.

For the csh or tcsh shells, you would add something like this to your
~/.cshrc file:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sjplimp/sparta/src

2.4.4. Calling the SPARTA library:

Either flavor of library (static or shared) allows one or more SPARTA
objects to be instantiated from the calling program.

When used from a C++ program, all of SPARTA is wrapped in a SPARTA_NS
namespace; you can safely use any of its classes and methods from within
the calling code, as needed.

When used from a C or Fortran program or a scripting language like
Python, the library has a simple function-style interface, provided in
src/library.cpp and src/library.h.

See How-to discussions of the manual for ideas on how to couple SPARTA to other codes via its library interface.
See Python interface to SPARTA of the manual for a
description of the Python wrapper provided with SPARTA that operates
through the SPARTA library interface.

The files src/library.cpp and library.h define the C-style API for using
SPARTA as a library. See Library interface to SPARTA of the manual for a description of
the interface and how to extend it for your needs.

2.5. Running SPARTA

By default, SPARTA runs by reading commands from standard input. Thus if
you run the SPARTA executable by itself, e.g.

spa_g++

it will simply wait, expecting commands from the keyboard. Typically you
should put commands in an input script and use I/O redirection, e.g.

spa_g++ < in.file

For parallel environments this should also work. If it does not, use the
‘-in’ command-line switch, e.g.

spa_g++ -in in.file

Commands describes how input scripts are structured and what commands they contain.

You can test SPARTA on any of the sample inputs provided in the examples
or bench directory. Input scripts are named in.* and sample outputs are
named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run one of the benchmarks on a Linux box, using
mpirun to launch a parallel job:

cd src
make g++
cp spa_g++ ../bench
cd ../bench
mpirun -np 4 spa_g++ < in.free

or:

cd build
cmake -DCMAKE_CXX_COMPILER=g++ -DSPARTA_MACHINE=g++ /path/to/sparta/cmake
cp src/spa_g++ /path/to/bench
cd /path/to/bench
mpirun -np 4 spa_g++ < in.free

See this page [http://sparta.sandia.gov/bench.html] for timings for
this and the other benchmarks on various platforms.

The screen output from SPARTA is described in the next section. As it
runs, SPARTA also writes a log.sparta file with the same information.

Note that this sequence of commands copies the SPARTA executable
(spa_g++) to the directory with the input files. This may not be
necessary, but some versions of MPI reset the working directory to where
the executable is, rather than leave it as the directory where you
launch mpirun from (if you launch spa_g++ on its own and not under
mpirun). If that happens, SPARTA will look for additional input files
and write its output files to the executable directory, rather than your
working directory, which is probably not what you want.

If SPARTA encounters errors in the input script or while running a
simulation it will print an ERROR message and stop or a WARNING message
and continue. See Errors for a discussion of the various kinds of errors SPARTA can or can’t detect, a list of all ERROR and WARNING messages, and what to do about them.

SPARTA can run a problem on any number of processors, including a single
processor. The random numbers used by each processor will be different
so you should only expect statistical consistency if the same problem is
run on different numbers of processors.

SPARTA can run as large a problem as will fit in the physical memory of
one or more processors. If you run out of memory, you must run on more
processors or setup a smaller problem.

2.6. Command-line options

At run time, SPARTA recognizes several optional command-line switches
which may be used in any order. Either the full word or a one-or-two
letter abbreviation can be used:

	-e or -echo

	-i or -in

	-h or -help

	-k or -kokkos

	-l or -log

	-p or -partition

	-pk or -package

	-pl or -plog

	-ps or -pscreen

	-sc or -screen

	-sf or -suffix

	-v or -var

For example, spa_g++ might be launched as follows:

mpirun -np 16 spa_g++ -v f tmp.out -l my.log -sc none < in.sphere
mpirun -np 16 spa_g++ -var f tmp.out -log my.log -screen none < in.sphere

Here are the details on the options:

-echo style

Set the style of command echoing. The style can be none or screen or
log or both. Depending on the style, each command read from the
input script will be echoed to the screen and/or logfile. This can be
useful to figure out which line of your script is causing an input
error. The default value is log. The echo style can also be set by
using the echo command in the input script itself.

-in file

Specify a file to use as an input script. This is an optional switch
when running SPARTA in one-partition mode. If it is not specified,
SPARTA reads its input script from stdin - e.g. spa_g++ < in.run. This
is a required switch when running SPARTA in multi-partition mode, since
multiple processors cannot all read from stdin.

-help

Print a list of options compiled into this executable for each SPARTA
style (fix, compute, collide, etc). SPARTA will print the info and
immediately exit if this switch is used.

-kokkos on/off keyword/value ...

Explicitly enable or disable KOKKOS support, as provided by the KOKKOS
package. Even if SPARTA is built with this package, as described above
in Making SPARTA with optional packages, this switch must be set to enable running
with the KOKKOS-enabled styles the package provides. If the switch is
not set (the default), SPARTA will operate as if the KOKKOS package were
not installed; i.e. you can run standard SPARTA for testing or
benchmarking purposes.

Additional optional keyword/value pairs can be specified which determine
how Kokkos will use the underlying hardware on your platform. These
settings apply to each MPI task you launch via the “mpirun” or “mpiexec”
command. You may choose to run one or more MPI tasks per physical node.
Note that if you are running on a desktop machine, you typically have
one physical node. On a cluster or supercomputer there may be dozens or
1000s of physical nodes.

Either the full word or an abbreviation can be used for the keywords.
Note that the keywords do not use a leading minus sign. I.e. the keyword
is “t”, not “-t”. Also note that each of the keywords has a default
setting. Example of when to use these options and what settings to use
on different platforms is given in Accelerating SPARTA performance.

	d or device

	g or gpus

	t or threads

	n or numa

device Nd

This option is only relevant if you built SPARTA with
KOKKOS_DEVICES=Cuda, you have more than one GPU per node, and if you are
running with only one MPI task per node. The Nd setting is the ID of the
GPU on the node to run on. By default Nd = 0. If you have multiple GPUs
per node, they have consecutive IDs numbered as 0,1,2,etc. This setting
allows you to launch multiple independent jobs on the node, each with a
single MPI task per node, and assign each job to run on a different GPU.

gpus Ng Ns

This option is only relevant if you built SPARTA with
KOKKOS_DEVICES=Cuda, you have more than one GPU per node, and you are
running with multiple MPI tasks per node. The Ng setting is how many
GPUs you will use per node. The Ns setting is optional. If set, it is
the ID of a GPU to skip when assigning MPI tasks to GPUs. This may be
useful if your desktop system reserves one GPU to drive the screen and
the rest are intended for computational work like running SPARTA. By
default Ng = 1 and Ns is not set.

Depending on which flavor of MPI you are running, SPARTA will look for
one of these 4 environment variables

SLURM_LOCALID (various MPI variants compiled with SLURM support)
MPT_LRANK (HPE MPI)
MV2_COMM_WORLD_LOCAL_RANK (Mvapich)
OMPI_COMM_WORLD_LOCAL_RANK (OpenMPI)

which are initialized by the “srun”, “mpirun” or “mpiexec” commands. The
environment variable setting for each MPI rank is used to assign a
unique GPU ID to the MPI task.

threads Nt

This option assigns Nt number of threads to each MPI task for performing
work when Kokkos is executing in OpenMP or pthreads mode. The default is
Nt = 1, which essentially runs in MPI-only mode. If there are Np MPI
tasks per physical node, you generally want Np*Nt = the number of
physical cores per node, to use your available hardware optimally. If
SPARTA is compiled with KOKKOS_DEVICES=Cuda, this setting has no effect.

-log file

Specify a log file for SPARTA to write status information to. In
one-partition mode, if the switch is not used, SPARTA writes to the file
log.sparta. If this switch is used, SPARTA writes to the specified file.
In multi-partition mode, if the switch is not used, a log.sparta file is
created with hi-level status information. Each partition also writes to
a log.sparta.N file where N is the partition ID. If the switch is
specified in multi-partition mode, the hi-level logfile is named “file”
and each partition also logs information to a file.N. For both
one-partition and multi-partition mode, if the specified file is “none”,
then no log files are created. Using a log command in the
input script will override this setting. Option -plog will override the
name of the partition log files file.N.

-partition 8x2 4 5 ...

Invoke SPARTA in multi-partition mode. When SPARTA is run on P
processors and this switch is not used, SPARTA runs in one partition,
i.e. all P processors run a single simulation. If this switch is used,
the P processors are split into separate partitions and each partition
runs its own simulation. The arguments to the switch specify the number
of processors in each partition. Arguments of the form MxN mean M
partitions, each with N processors. Arguments of the form N mean a
single partition with N processors. The sum of processors in all
partitions must equal P. Thus the command “-partition 8x2 4 5” has 10
partitions and runs on a total of 25 processors. Note that with MPI
installed on a machine (e.g. your desktop), you can run on more
(virtual) processors than you have physical processors.

To run multiple independent simulations from one input script, using
multiple partitions, see Running multiple simulations from one input script of
the manual. World- and universe-style variables are useful in this
context.

-package style args

Invoke the package command with style and args. The syntax is the same as if the command appeared at the top of the input script. For example “-package kokkos on gpus 2” or “-pk kokkos g 2” is the same as package kokkos g 2 in the input script. The possible styles and args are documented on the package command doc page. This switch can be used multiple times.

Along with the -suffix command-line switch,
this is a convenient mechanism for invoking the KOKKOS accelerator package and its options without having to edit an input script.

-plog file

Specify the base name for the partition log files, so partition N writes
log information to file.N. If file is none, then no partition log files
are created. This overrides the filename specified in the -log
command-line option. This option is useful when working with large
numbers of partitions, allowing the partition log files to be suppressed
(-plog none) or placed in a sub-directory (-plog
replica_files/log.sparta) If this option is not used the log file for
partition N is log.sparta.N or whatever is specified by the -log
command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N
writes screen information to file.N. If file is none, then no partition
screen files are created. This overrides the filename specified in the
-screen command-line option. This option is useful when working with
large numbers of partitions, allowing the partition screen files to be
suppressed (-pscreen none) or placed in a sub-directory (-pscreen
replica_files/screen). If this option is not used the screen file for
partition N is screen.N or whatever is specified by the -screen
command-line option.

-screen file

Specify a file for SPARTA to write its screen information to. In
one-partition mode, if the switch is not used, SPARTA writes to the
screen. If this switch is used, SPARTA writes to the specified file
instead and you will see no screen output. In multi-partition mode, if
the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the
partition ID. If the switch is specified in multi-partition mode, the
hi-level screen dump is named “file” and each partition also writes
screen information to a file.N. For both one-partition and
multi-partition mode, if the specified file is “none”, then no screen
output is performed. Option -pscreen will override the name of the
partition screen files file.N.

-suffix style args

Use variants of various styles if they exist. The specified style can be
kk. This refers to optional KOKKOS package that SPARTA can be built
with, as described above in Making SPARTA with optional packages.

Along with the “-package” command-line switch, this is a convenient
mechanism for invoking the KOKKOS accelerator package and its options
without having to edit an input script.

As an example, the KOKKOS package provides a compute temp command variant,
with style name temp/kk.
A variant style can be specified explicitly in your input script, e.g. compute temp/kk.
If the suffix command is used with the appropriate style, you
do not need to modify your input script.
The specified suffix (kk) is automatically appended whenever your input script command creates a new fix command, compute command, etc. If the variant version does not exist, the standard version is created.

For the KOKKOS package, using this command-line switch also invokes the
default KOKKOS settings, as if the command “package kokkos” were used at
the top of your input script. These settings can be changed by using the
“-package kokkos” command-line switch or the package command in your script.

The suffix command can also be used within an input
script to set a suffix, or to turn off or back on any suffix setting
made via the command line.

-var name value1 value2 ...

Specify a variable that will be defined for substitution purposes when
the input script is read. “Name” is the variable name which can be a
single character (referenced as $x in the input script) or a full string
(referenced as ${abc}). An index-style variable will
be created and populated with the subsequent values, e.g. a set of
filenames. Using this command-line option is equivalent to putting the
line “variable name index value1 value2 …” at the beginning of the
input script. Defining an index variable as a command-line argument
overrides any setting for the same index variable in the input script,
since index variables cannot be re-defined. See the
variable command for more info on defining index and
other kinds of variables and Section Parsing rules for more info on using variables in input scripts.

Important

Currently, the command-line parser looks for arguments that start with “-” to indicate new switches. Thus you cannot specify multiple variable values if any of they start with a “-”, e.g. a negative numeric value. It is OK if the first value1 starts with a “-”, since it is automatically skipped.

2.7. SPARTA screen output

As SPARTA reads an input script, it prints information to both the
screen and a log file about significant actions it takes to setup a
simulation. When the simulation is ready to begin, SPARTA performs
various initializations and prints the amount of memory (in MBytes per
processor) that the simulation requires. It also prints details of the
initial state of the system. During the run itself, statistical
information is printed periodically, every few timesteps. When the run
concludes, SPARTA prints the final state and a total run time for the
simulation. It then appends statistics about the CPU time and size of
information stored for the simulation. An example set of statistics is
shown here:

	The first line gives the total CPU run time for the simulation, in seconds.

Loop time of 0.639973 on 4 procs for 1000 steps with 45792 particles

	The next section gives a breakdown of the CPU timing (in seconds) in 7 categories. The first four are timings for particles moves, which includes interaction with surface elements, then particle collisions, then sorting of particles (required to perform collisions), and communication of particles between processors. The Modify section is time for operations invoked by fixes and computes. The Output section is for dump command and statistical output. The Other category is typically for load-imbalance, as some MPI tasks wait for others MPI tasks to complete. In each category the min,ave,max time across processors is shown, as well as a variation, and the percentage of total time.

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total

Move | 0.10948 | 0.26191 | 0.42049 | 27.6 | 40.92
Coll | 0.013711 | 0.041659 | 0.070985 | 13.5 | 6.51
Sort | 0.01733 | 0.040286 | 0.063573 | 10.6 | 6.29
Comm | 0.02276 | 0.023555 | 0.02493 | 0.6 | 3.68
Modify | 0.00018167 | 0.024758 | 0.051345 | 15.6 | 3.87
Output | 0.0002172 | 0.0007354 | 0.0012152 | 0.0 | 0.11
Other | | 0.2471 | | | 38.61

	The next section gives some statistics about the run. These are total counts of particle moves, grid cells touched by particles, the number of particles communicated between processors, collisions of particles with the global boundary and with surface elements (none in this problem), as well as collision and reaction statistics.

Particle moves = 38096354 (38.1M)
Cells touched = 43236871 (43.2M)
Particle comms = 146623 (0.147M)
Boundary collides = 182782 (0.183M)
Boundary exits = 181792 (0.182M)
SurfColl checks = 7670863 (7.67M)
SurfColl occurs = 177740 (0.178M)
Surf reactions = 124169 (0.124M)
Collide attempts = 1232 (1K)
Collide occurs = 553 (0.553K)
Gas reactions = 23 (0.023K)
Particles stuck = 0

	The next section gives additional statistics, normalized by timestep or processor count.

Particle-moves/CPUsec/proc: 1.4882e+07
Particle-moves/step: 38096.4
Cell-touches/particle/step: 1.13493
Particle comm iterations/step: 1.999
Particle fraction communicated: 0.00384874
Particle fraction colliding with boundary: 0.00479789
Particle fraction exiting boundary: 0.0047719
Surface-checks/particle/step: 0.201354
Surface-collisions/particle/step: 0.00466554
Surface-reactions/particle/step: 0.00325934
Collision-attempts/particle/step: 1.232
Collisions/particle/step: 0.553
Gas-reactions/particle/step: 0.023

	The next 2 sections are optional. The “Gas reaction tallies” section is only output if the react command is used. For each reaction with a non-zero tally, the number of those reactions that occurred during the run is printed. The “Surface reaction tallies” section is only output if the surf_react command was used one or more times, to assign reaction models to individual surface elements or the box boundaries. For each of the commands, and each of its reactions with a non-zero tally, the number of those reactions that occurred during the run is printed. Note that this is effectively a summation over all the surface elements and/or box boundaries the surf_react command was used to assign a reaction model to.

Gas reaction tallies: style tce #-of-reactions 45 \
reaction O2 + N --> O + O + N: 10 \
reaction O2 + O --> O + O + O: 5 \
reaction N2 + O --> N + N + O: 8

Surface reaction tallies: id 1 style global #-of-reactions 2 \
reaction all: 124025 \
reaction delete: 53525 \
reaction create: 70500

	The last section is a histogramming across processors of various per-processor statistics: particle count, owned grid cells, processor, ghost grid cells which are copies of cells owned by other processors, and empty cells which are ghost cells without surface information (only used to pass particles to neighboring processors).
The ave value is the average across all processors. The max and min values are for any processor. The 10-bin histogram shows the distribution of the value across processors. The total number of histogram counts is equal to the number of processors.

Particles: 11448 ave 17655 max 5306 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Cells: 100 ave 100 max 100 min
Histogram: 4 0 0 0 0 0 0 0 0 0
GhostCell: 21 ave 21 max 21 min
Histogram: 4 0 0 0 0 0 0 0 0 0
EmptyCell: 21 ave 21 max 21 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Surfs: 50 ave 50 max 50 min
Histogram: 4 0 0 0 0 0 0 0 0 0
GhostSurf: 0 ave 0 max 0 min
Histogram: 4 0 0 0 0 0 0 0 0 0

3. Commands

This section describes how a SPARTA input script is formatted and what
commands are used to define a SPARTA simulation.

	SPARTA input script

	Parsing rules

	Input script structure

	Commands listed by category

	Individual commands

3.1. SPARTA input script

SPARTA executes by reading commands from a input script (text file), one
line at a time. When the input script ends, SPARTA exits. Each command
causes SPARTA to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings,
which means you only need to use the command if you wish to change the
default.

In many cases, the ordering of commands in an input script is not
important. However the following rules apply:

	SPARTA does not read your entire input script and then perform a simulation with all the settings.
Rather, the input script is read one line at a time and each command takes effect when it is read.
Thus this sequence of commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 secs) is used for two simulations of 100 timesteps each.
In the 2nd case, the default timestep (1.0 sec is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for the 2nd one.

	Some commands are only valid when they follow other commands. For example you cannot define the grid overlaying the simulation box until the box itself has been defined. Likewise you cannot read in triangulated surfaces until a grid has been defined to store them.

Many input script errors are detected by SPARTA and an ERROR or WARNING message is printed. Section Errors gives more information on what errors mean. The documentation for each command lists restrictions on how the command can be used.

3.2. Parsing rules

Each non-blank line in the input script is treated as a command. SPARTA
commands are case sensitive. Command names are lower-case, as are
specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPARTA:

	If the last printable character on the line is a & character, the command is assumed to continue on the next line.
The next line is concatenated to the previous line by removing the & character and newline. This allows long commands to be continued across two or more lines.

	All characters from the first # character onward until a newline are treated as comment and discarded. See an exception in (6). Note that a comment after a trailing & character will prevent the command from continuing on the next line. Also note that for multi-line commands a single leading # will comment out the entire command.

	The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string. See an exception in (6).

If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly brackets follow the $, then the variable name is the single character immediately following the $. Thus ${myTemp} and $x refer to variable names myTemp and x.

How the variable is converted to a text string depends on what style of variable it is; see the variable command doc page for details. It can be a variable that stores multiple text strings, and return one of them. The returned text string can be multiple “words” (space separated) which will then be interpreted as multiple arguments in the input command. The variable can also store a numeric formula which will be evaluated and its numeric result returned as a string.

As a special case, if the $ is followed by parenthesis, then the text inside the parenthesis is treated as an “immediate” variable and evaluated as an equal-style variable. This is a way to use numeric formulas in an input script without having to assign them to variable names. For example, these 3 input script lines:

variable X equal (xlo+xhi)/2+sqrt(v_area)
region 1 block $X 2 INF INF EDGE EDGE
variable X delete

can be replaced by

region 1 block $((xlo+xhi)/2+sqrt(v_area)) 2 INF INF EDGE EDGE

so that you do not have to define (or discard) a temporary variable X.

Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other variables to substitute for. Thus you cannot do this:

variable a equal 2
variable b2 equal 4
print "B2 = ${b$a}"

Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is valid syntax for an equal-style variable.

See the variable command for more details of how strings are assigned to variables and evaluated, and how they can be used in input script commands.

	The line is broken into “words” separated by whitespace (tabs, spaces). Note that words can thus contain letters, digits, underscores, or punctuation characters.

	The first word is the command name. All successive words in the line are arguments.

	If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single quotes. A long single argument enclosed in quotes can even span multiple lines if the & character is used, as described above. E.g.

print "Volume = $v"
print 'Volume = $v'
variable a string "red green blue &
 purple orange cyan"
if "$steps > 1000" then quit

The quotes are removed when the single argument is stored internally.

See the dump modify format or print command, or if command for examples. A “#” or “$” character that is between quotes will not be treated as a comment indicator in (2) or substituted for as a variable in (3).

Important

If the argument is itself a command that requires a quoted argument (e.g. using a print command as part of an if command or run every command), then the double and single quotes can be nested in the usual manner. See the doc pages for those commands for examples. Only one level of nesting is allowed, but that should be sufficient for most use cases.

3.3. Input script structure

This section describes the structure of a typical SPARTA input script.
The “examples” directory in the SPARTA distribution contains sample
input scripts; the corresponding problems are discussed in Section Example problems, and animated on the SPARTA WWW Site [http://sparta.sandia.gov].

A SPARTA input script typically has 4 parts:

	Initialization

	Problem definition

	Settings

	Run a simulation

The last 2 parts can be repeated as many times as desired. I.e. run a
simulation, change some settings, run some more, etc. Each of the 4
parts is now described in more detail. Remember that almost all the
commands need only be used if a non-default value is desired.

	Initialization

Set parameters that need to be defined before the simulation domain,
particles, grid cells, and surfaces are defined.

Relevant commands include dimension command
units command, and seed command.

	Problem definition

These items must be defined before running a SPARTA calculation, and
typically in this order:

	create_box for the simulation box

	create_grid or read_grid for grid cells

	read_surf or read_isurf for surfaces

	species for particle species properties

	create_particles for particles

The first two are required. Surfaces are optional. Particles are also
optional in the setup stage, since they can be added as the simulation
runs.

The system can also be load-balanced after the grid and/or particles are
defined in the setup stage using the balance_grid command. The grid can also be adapted before or between simulations using the adapt_grid command.

	Settings

Once the problem geometry, grid cells, surfaces, and particles are defined, a variety of settings can be specified,
which include simulation parameters, output options, etc. Commands that do this include:

global, timestep,
collide for a collision model, react for a chemisty model, fix for boundary conditions,
time-averaging, load-balancing, etc. compute for
diagnostic computations stats_style for screen
output dump for snapshots of particle, grid, and surface
info dump image for on-the-fly images of the simulation

	Run a simulation

A simulation is run using the run command.

3.4. Commands listed by category

This section lists many SPARTA commands, grouped by category. The next section lists all commands alphabetically.

	Initialization:

	dimension, package,
seed, suffix, units

	Problem definition:

	boundary, bound_modify,
create_box, create_grid,
create_particles,
mixture, read_grid,
read_isurf,
read_particles,
read_surf, read_restart,
species

	Settings:

	collide, collide_modify,
compute, fix,
global, react,
react_modify, region,
surf_collide,
surf_modify, surf_react,
timestep, uncompute,
unfix

	Output:

	dump, dump_image,
dump_modify, restart,
stats, stats_modify,
stats_style, undump,
write_grid, write_isurf,
write_surf, write_restart

	Actions:

	adapt_grid, balance_grid,
run, scale_particles

	Miscellaneous:

	clear, echo, if,
include, jump,
label, log, next,
partition, print,
quit, shell,
variable

3.5. Individual commands

This section lists all SPARTA commands alphabetically, with a separate listing below of styles within certain commands. The previous section lists many of the same commands, grouped by category.

	adapt_grid

	balance_grid

	boundary

	bound_modify

	clear

	collide

	collide_modify

	compute

	create_box

	create_grid

	create_particles

	dimension

	dump

	dump image

	dump_modify

	dump movie

	echo

	fix

	global

	group

	if

	include

	jump

	label

	log

	mixture

	move_surf

	next

	package

	partition

	print

	quit

	react

	react_modify

	read_grid

	read_isurf

	read_particles

	read_restart

	read_surf

	region

	remove_surf

	reset_timestep

	restart

	run

	scale_particles

	seed

	shell

	species

	stats

	stats_modify

	stats_style

	suffix

	surf_collide

	surf_react

	surf_modify

	timestep

	uncompute

	undump

	unfix

	units

	variable

	write_grid

	write_isurf

	write_restart

	write_surf

	

3.5.1. Fix styles

See the fix command for one-line descriptions of each
style or click on the style itself for a full description. Some of the
styles have accelerated versions, which can be used if SPARTA is built
with the appropriate accelerated package.
This is indicated by additional letters in parenthesis: k = KOKKOS.

	ablate

	adapt (k)

	ambipolar

	ave/grid (k)

	ave/histo (k)

	ave/histo/weight (k)

	ave/surf

	ave/time

	balance (k)

	emit/face (k)

	emit/face/file

	emit/surf

	grid/check (k)

	move/surf (k)

	print

	vibmode

	
	

3.5.2. Compute styles

See the compute command for one-line descriptions of
each style or click on the style itself for a full description. Some of
the styles have accelerated versions, which can be used if SPARTA is
built with the appropriate accelerated package. This is indicated by additional letters in parenthesis: k = KOKKOS.

	boundary (k)

	count (k)

	distsurf/grid (k)

	eflux/grid (k)

	fft/grid

	grid (k)

	isurf/grid

	ke/particle (k)

	lambda/grid (k)

	pflux/grid (k)

	property/grid (k)

	react/boundary

	react/surf

	react/isurf/grid

	reduce

	sonine/grid (k)

	surf (k)

	thermal/grid (k)

	temp (k)

	tvib/grid

	
	
	
	

3.5.3. Collide styles

See the collide command for details of each style.
Some of the styles have accelerated versions, which can be used if
SPARTA is built with the appropriate accelerated package. This is indicated by additional letters in parenthesis: k = KOKKOS.

	vss (k)

3.5.4. Surface collide styles

See the surf_collide command for details of each style. Some of the
styles have accelerated versions, which can be used if SPARTA is built
with the appropriate accelerated package. This
is indicated by additional letters in parenthesis: k = KOKKOS.

	cll

	diffuse (k)

	impulsive

	piston (k)

	specular (k)

	td

	vanish (k)

	
	

3.5.5. Surface reaction styles

See the surf_react command for details of each
style.

	global

	prob

4. Packages

This section gives an overview of the optional packages that extend
SPARTA functionality with instructions on how to build SPARTA with each
of them. Packages are groups of files that enable a specific set of
features. For example, the KOKKOS package provides styles that can run
on different hardware such as GPUs. You can see the list of all packages
and “make” commands to manage them by typing “make package” from within
the src directory of the SPARTA distribution or “cmake -DSPARTA_LIST_PKGS”
from within a build directory. Getting Started gives general info on how to
install and un-install packages as part of the SPARTA build process.

Packages may require some additional code compiled located in the lib
folder, or may require an external library to be downloaded, compiled,
installed, and SPARTA configured to know about its location and
additional compiler flags.

Following the next two tables is a sub-section for each package. It
lists authors (if applicable) and summarizes the package contents. It
has specific instructions on how to install the package, including (if
necessary) downloading or building any extra library it requires. It
also gives links to documentation, example scripts, and pictures/movies
(if available) that illustrate use of the package.

NOTE: To see the complete list of commands a package adds to SPARTA,
just look at the files in its src directory, e.g. “ls src/KOKKOS”. Files
with names that start with fix, compute, etc correspond to commands with
the same style names.

In these two tables, the “Example” column is a sub-directory in the
examples directory of the distribution which has an input script that
uses the package. E.g. “fft” refers to the examples/fft directory; The
“Library” column indicates whether an extra library is needed to build
and use the package:

	dash = no library

	sys = system library: you likely have it on your machine

	int = internal library: provided with SPARTA, but you may need to
build it

	ext = external library: you will need to download and install it on
your machine

SPARTA packages

	Package

	Description

	Doc page

	Example

	Library

	package-fft

	fast Fourier transforms

	compute_style compute/fft/grid

	fft

	int or ext

	package-kokkos

	Kokkos-enabled styles

	KOKKOS package

	Benchmarks [http://sparta.sandia.gov/bench.html]

	
	

4.1. FFT package

4.1.1. Contents

Apply Fast Fourier Transforms (FFTs) to simulation data. The FFT library
is specified in the Makefile.machine using the FFT_INC, FFT_PATH, and
FFT_LIB variables. Supported external FFT libraries that can be
specified include FFTW2, FFTW3, and MKL.If no FFT library is specified
in the Makefile, SPARTA will use the internal KISS FFT library that is
included with SPARTA. See the see discussion in Section 2.2.2.7: Step 6.

4.1.2. Install or un-install with make:

make yes-fft
make machine

make no-fft
make machine

4.1.3. Install or un-install with CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/machine.cmake -DPKG_FFT=ON /path/to/sparta/cmake
make

cmake -C /path/to/sparta/cmake/presets/machine.cmake -DPKG_FFT=OFF /path/to/sparta/cmake
make

4.1.4. Supporting info:

	compute fft/grid

	examples/fft

4.2. KOKKOS package

4.2.1. Contents:

Styles adapted to compile using the Kokkos library which can convert
them to OpenMP or CUDA code so that they run efficiently on multicore
CPUs, KNLs, or GPUs. All the styles have a “kk” as a suffix in their
style name. Section KOKKOS package gives details of
what hardware and software is required on your system, and how to build
and use this package. Its styles can be invoked at run time via the “-sf
kk” or “-suffix kk” Command-line options.

You must have a C++14 compatible compiler to use this package.

Authors: The KOKKOS package was created primarily by Stan Moore (Sandia), with contributions from other folks as well. It uses the open-source Kokkos library [https://github.com/kokkos] which was developed by Carter Edwards, Christian Trott, and others at Sandia, and which is included in the SPARTA distribution in lib/kokkos.

4.2.2. Install or un-install:

For the KOKKOS package, you have 3 choices when building. You can build with either CPU or KNL or GPU support.
Each choice requires additional settings in your Makefile.machine or machine.cmake file for the KOKKOS_DEVICES and KOKKOS_ARCH settings. See the
src/MAKE/OPTIONS/Makefile.kokkos* or cmake/presets/kokkos.cmake
files for examples. For CMake, it’s best to start by copying
cmake/presets/kokkos_cuda.cmake to cmake/presets/machine.cmake.

4.2.2.1. For multicore CPUs using OpenMP:

Using Makefiles:

KOKKOS_DEVICES = OpenMP
KOKKOS_ARCH = HSW # HSW = Haswell, SNB = SandyBridge, BDW = Broadwell, etc

Using CMake:

-DKokkos_ENABLE_OPENMP=ON
-DKokkos_ARCH_HSW=ON

4.2.2.2. For Intel KNLs using OpenMP:

Using Makefiles:

KOKKOS_DEVICES = OpenMP
KOKKOS_ARCH = KNL

4.2.2.3. For NVIDIA GPUs using CUDA:

KOKKOS_DEVICES = Cuda
KOKKOS_ARCH = PASCAL60,POWER8 # P100 hosted by an IBM Power8, etc
KOKKOS_ARCH = KEPLER37,POWER8 # K80 hosted by an IBM Power8, etc

Using CMake:

-DKokkos_ENABLE_CUDA=ON
-DKokkos_ARCH_PASCAL60=ON -DKokkos_ARCH_POWER8=ON :pre

For make with GPUs, the following 2 lines define a nvcc wrapper compiler, which will use nvcc for compiling CUDA files or use a C++ compiler for non-Kokkos, non-CUDA
files.

KOKKOS_ABSOLUTE_PATH = $(shell cd $(KOKKOS_PATH); pwd)
export OMPI_CXX = $(KOKKOS_ABSOLUTE_PATH)/bin/nvcc_wrapper
CC = mpicxx

For CMake, copy cmake/presets/kokkos_cuda.cmake so OMPI_CXX and CC are set
properly.

Once you have an appropriate Makefile.machine or machine.cmake, you can
install/un-install the package and build SPARTA in the usual manner.
Note that you cannot build one executable to run on multiple hardware
targets (CPU or KNL or GPU). You need to build SPARTA once for each
hardware target, to produce a separate executable.

Using make:

make yes-kokkos
make machine

make no-kokkos
make machine

Using CMake:

cmake -C /path/to/sparta/cmake/presets/machine.cmake /path/to/sparta/cmake
make

cmake -C /path/to/sparta/cmake/presets/machine.cmake -DPKG_KOKKOS=OFF /path/to/sparta/cmake
make

4.2.3. Supporting info:

	src/KOKKOS: filenames -> commands

	src/KOKKOS/README

	lib/kokkos/README

	Section 5: Accelerating SPARTA performance

	KOKKOS package

	Section 2.6 -k on Command-line options

	Section 2.6 -sf kk

	Section 2.6 -pf kokkos

	package kokkos

	Benchmarks page [http://sparta.sandia.gov/bench.html] of web site

5. Accelerating SPARTA performance

This section describes various methods for improving SPARTA performance
for different classes of problems running on different kinds of
machines.

Currently the only option is to use the KOKKOS accelerator packages
provided with SPARTA that contains code optimized for certain kinds of
hardware, including multi-core CPUs, GPUs, and Intel Xeon Phi
coprocessors.

	Measuring performance

	Packages with optimized styles

	KOKKOS package

The Benchmark page [http://sparta.sandia.gov/bench.html] of the
SPARTA web site gives performance results for the various accelerator
packages discussed in Section 5.2, for several of the standard SPARTA
benchmark problems, as a function of problem size and number of compute
nodes, on different hardware platforms.

5.1. Measuring performance

Before trying to make your simulation run faster, you should understand
how it currently performs and where the bottlenecks are.

The best way to do this is run the your system (actual number of
particles) for a modest number of timesteps (say 100 steps) on several
different processor counts, including a single processor if possible. Do
this for an equilibrium version of your system, so that the 100-step
timings are representative of a much longer run. There is typically no
need to run for 1000s of timesteps to get accurate timings; you can
simply extrapolate from short runs.

For the set of runs, look at the timing data printed to the screen and log file at the end of each SPARTA run.
This section of the manual has an overview.

Running on one (or a few processors) should give a good estimate of the
serial performance and what portions of the timestep are taking the most
time. Running the same problem on a few different processor counts
should give an estimate of parallel scalability. I.e. if the simulation
runs 16x faster on 16 processors, its 100% parallel efficient; if it
runs 8x faster on 16 processors, it’s 50% efficient.

The most important data to look at in the timing info is the timing
breakdown and relative percentages. For example, trying different
options for speeding up the FFTs will have little impact if they only
consume 10% of the run time. If the collide time is dominating, you may
want to look at the KOKKOS package, as discussed below. Comparing how
the percentages change as you increase the processor count gives you a
sense of how different operations within the timestep are scaling.

Another important detail in the timing info are the histograms of
particles counts and neighbor counts. If these vary widely across
processors, you have a load-imbalance issue. This often results in
inaccurate relative timing data, because processors have to wait when
communication occurs for other processors to catch up. Thus the reported
times for “Communication” or “Other” may be higher than they really are,
due to load-imbalance. If this is an issue, you can uncomment the
MPI_Barrier() lines in src/timer.cpp, and recompile SPARTA, to obtain
synchronized timings.

5.2. Packages with optimized styles

Accelerated versions of various collide_style,
fixes, computes, and other commands
have been added to SPARTA via the KOKKOS package, which may run faster
than the standard non-accelerated versions.

All of these commands are in the KOKKOS package provided with SPARTA. An
overview of packages is give in Section Packages

SPARTA currently has acceleration support for three kinds of hardware,
via the KOKKOS package: Many-core CPUs, NVIDIA GPUs, and Intel Xeon Phi.

Whether you will see speedup for your hardware may depend on the size
problem you are running and what commands (accelerated and
non-accelerated) are invoked by your input script. While these doc pages
include performance guidelines, there is no substitute for trying out
the KOKKOS package.

Any accelerated style has the same name as the corresponding standard
style, except that a suffix is appended. Otherwise, the syntax for the
command that uses the style is identical, their functionality is the
same, and the numerical results it produces should also be the same,
except for precision and round-off effects, and differences in random
numbers.

For example, the KOKKOS package provides an accelerated variant of the
Temperature Compute compute temp command, namely
compute temp/kk

To see what accelerate styles are currently available, see Section
Individual commands of the manual. The doc pages for
individual commands (e.g. compute temp command) also
list any accelerated variants available for that style.

To use an accelerator package in SPARTA, and one or more of the styles
it provides, follow these general steps:

	Action

	Steps

	Using make:

	

	install the accelerator package

	make yes-fft, make yes-kokkos, etc

	add compile/link flags to Makefile.machine in src/MAKE

	KOKKOS_ARCH=PASCAL60

	re-build SPARTA

	make kokkos_cuda

	or using CMake from a build directory:

	

	install the accelerator package

	cmake -DPKG_FFT=ON -DPKG_KOKKOS=ON, etc

	add compile/link flags

	cmake -C /path/to/sparta/cmake/presets/kokkos_cuda.cmake -DKokkos_ARCH_PASCAL60=ON

	re-build SPARTA

	make

	Then do the following:

	

	prepare and test a regular SPARTA simulation

	lmp_kokkos_cuda -in in.script; mpirun -np 32 lmp_kokkos_cuda -in in.script

	enable specific accelerator support via ‘-k on’ command-line switch

	k on g 1

	set any needed options for the package via “-pk” command-line switch or package command

	only if defaults need to be changed, -pk kokkos reduction atomic

	use accelerated styles in your input via “-sf” command-line switch or suffix command

	lmp_kokkos_cuda -in in.script -sf kk

Note that the first 3 steps can be done as a single command with
suitable make command invocations. This is discussed in Packages of the manual, and its use is illustrated in the individual accelerator sections.
Typically these steps only need to be done once, to create an executable that uses one or more accelerator packages.

The last 4 steps can all be done from the command-line when SPARTA is
launched, without changing your input script, as illustrated in the
individual accelerator sections. Or you can add
package command and suffix command to your input script.

The Benchmark page [http://sparta.sandia.gov/bench.html] of the
SPARTA web site gives performance results for the various accelerator
packages for several of the standard SPARTA benchmark problems, as a
function of problem size and number of compute nodes, on different
hardware platforms.

Here is a brief summary of what the KOKKOS package provides.

Styles with a “kk” suffix are part of the KOKKOS package, and can be run
using OpenMP on multicore CPUs, on an NVIDIA GPU, or on an Intel Xeon
Phi in “native” mode. The speed-up depends on a variety of factors, as
discussed on the KOKKOS accelerator page.

The KOKKOS accelerator package doc page explains:

	what hardware and software the accelerated package requires

	how to build SPARTA with the accelerated package

	how to run with the accelerated package either via command-line
switches or modifying the input script

	speed-ups to expect

	guidelines for best performance

	restrictions

5.3. KOKKOS package

Kokkos is a templated C++ library that provides abstractions to allow a
single implementation of an application kernel (e.g. a collision style)
to run efficiently on different kinds of hardware, such as GPUs, Intel
Xeon Phis, or many-core CPUs. Kokkos maps the C++ kernel onto different
backend languages such as CUDA, OpenMP, or Pthreads. The Kokkos library
also provides data abstractions to adjust (at compile time) the memory
layout of data structures like 2d and 3d arrays to optimize performance
on different hardware. For more information on Kokkos, see
Github [https://github.com/kokkos/kokkos]. Kokkos is part of
Trilinos [http://trilinos.sandia.gov/packages/kokkos]. The Kokkos
library was written primarily by Carter Edwards, Christian Trott, and
Dan Sunderland (all Sandia).

The SPARTA KOKKOS package contains versions of collide, fix, and compute
styles that use data structures and macros provided by the Kokkos
library, which is included with SPARTA in /lib/kokkos. The KOKKOS
package was developed primarily by Stan Moore (Sandia) with
contributions of various styles by others, including Dan Ibanez
(Sandia), Tim Fuller (Sandia), and Sam Mish (Sandia). For more
information on developing using Kokkos abstractions see the Kokkos
programmers’ guide at /lib/kokkos/doc/Kokkos_PG.pdf.

The KOKKOS package currently provides support for 3 modes of execution
(per MPI task). These are Serial (MPI-only for CPUs and Intel Phi),
OpenMP (threading for many-core CPUs and Intel Phi), and CUDA (for
NVIDIA GPUs). You choose the mode at build time to produce an executable
compatible with specific hardware.

Note

Kokkos support within SPARTA must be built with a C++14 compatible compiler. For a list of compilers that have been tested with the Kokkos library, see the Kokkos README [https://github.com/kokkos/kokkos/blob/master/README.md].

5.3.1. Building SPARTA with the KOKKOS package with Makefiles:

To build with the KOKKOS package, start with the provided Kokkos
Makefiles in /src/MAKE/. You may need to modify the KOKKOS_ARCH variable
in the Makefile to match your specific hardware. For example:

	for Sandy Bridge CPUs, set KOKKOS_ARCH=SNB

	for Broadwell CPUs, set KOKKOS_ARCH=BWD

	for K80 GPUs, set KOKKOS_ARCH=KEPLER37

	for P100 GPUs and Power8 CPUs, set KOKKOS_ARCH=PASCAL60,POWER8

5.3.2. Building SPARTA with the KOKKOS package with CMake:

To build with the KOKKOS package, start with the provided preset files
in /cmake/presets/. You may need to set -D Kokkos_ARCH_{TYPE}=ON
to match your specific hardware. For example:

	for Sandy Bridge CPUs, set -D Kokkos_ARCH_SNB=ON

	for Broadwell CPUs, set -D Kokkos_ARCH_BWD=ON

	for K80 GPUs, set -D Kokkos_ARCH_KEPLER37=ON

	for P100 GPUs and Power8 CPUs, set -D Kokkos_ARCH_PASCAL60=ON, -D Kokkos_ARCH_POWER8=ON

See the Advanced Kokkos Options: section below for a listing of all
Kokkos architecture options.

5.3.3. Compile for CPU-only (MPI only, no threading):

Use a C++14 compatible compiler and set Kokkos architecture variable as described above. Then do the following:

Using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_mpi_only

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_mpi_only.cmake
make

5.3.4. Compile for CPU-only (MPI plus OpenMP threading):

Note

To build with Kokkos support for OpenMP threading, your compiler must support the OpenMP interface. You should have one or more multi-core CPUs so that multiple threads can be launched by each MPI task running on a CPU.

Use a C++14 compatible compiler and set KOKKOS architecture variable as described above. Then do the following:

using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_omp

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_omp.cmake
make

5.3.5. Compile for Intel KNL Xeon Phi (Intel Compiler, OpenMPI):

Use a C++14 compatible compiler and do the following:

using Makefiles:
.. code-block:: make

cd sparta/src
make yes-kokkos
make kokkos_phi

using CMake:
.. code-block:: make

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_phi.cmake
make

5.3.6. Compile for CPUs and GPUs (with OpenMPI or MPICH):

Note

To build with Kokkos support for NVIDIA GPUs, NVIDIA CUDA software version 7.5 or later must be installed on your system.

Use a C++14 compatible compiler and set Kokkos architecture variable in
for both GPU and CPU as described
above. Then do the following:

using Makefiles:
.. code-block:: make

cd sparta/src
make yes-kokkos
make kokkos_cuda

using CMake:
.. code-block:: make

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_cuda.cmake
make

5.3.7. Running SPARTA with the KOKKOS package:

All Kokkos operations occur within the context of an individual MPI task
running on a single node of the machine. The total number of MPI tasks
used by SPARTA (one or multiple per compute node) is set in the usual
manner via the mpirun or mpiexec commands, and is independent of Kokkos.
The mpirun or mpiexec command sets the total number of MPI tasks used by
SPARTA (one or multiple per compute node) and the number of MPI tasks
used per node. E.g. the mpirun command in OpenMPI does this via its -np
and -npernode switches. Ditto for MPICH via -np and -ppn.

Running on a multi-core CPU:

Here is a quick overview of how to use the KOKKOS package for CPU
acceleration, assuming one or more 16-core nodes.

mpirun -np 16 spa_kokkos_mpi_only -k on -sf kk -in in.collide # 1 node, 16 MPI tasks/node, no multi-threading
mpirun -np 2 -ppn 1 spa_kokkos_omp -k on t 16 -sf kk -in in.collide # 2 nodes, 1 MPI task/node, 16 threads/task
mpirun -np 2 spa_kokkos_omp -k on t 8 -sf kk -in in.collide # 1 node, 2 MPI tasks/node, 8 threads/task
mpirun -np 32 -ppn 4 spa_kokkos_omp -k on t 4 -sf kk -in in.collide # 8 nodes, 4 MPI tasks/node, 4 threads/task

To run using the KOKKOS package, use the “-k on”, “-sf kk” and “-pk
kokkos” command-line switches in your
mpirun command. You must use the “-k on” command-line switch to enable the KOKKOS package. It
takes additional arguments for hardware settings appropriate to your
system. Those arguments are documented here. For OpenMP use:

-k on t Nt

The “t Nt” option specifies how many OpenMP threads per MPI task to use
with a node. The default is Nt = 1, which is MPI-only mode. Note that
the product of MPI tasks * OpenMP threads/task should not exceed the
physical number of cores (on a node), otherwise performance will suffer.
If hyperthreading is enabled, then the product of MPI tasks * OpenMP
threads/task should not exceed the physical number of cores * hardware
threads. The “-k on” switch also issues a “package kokkos” command (with
no additional arguments) which sets various KOKKOS options to default
values, as discussed on the package command doc page.

The “-sf kk” command-line switch will
automatically append the “/kk” suffix to styles that support it. In this
manner no modification to the input script is needed. Alternatively, one
can run with the KOKKOS package by editing the input script as described
below.

Note

When using a single OpenMP thread, the Kokkos Serial backend (i.e. Makefile.kokkos_mpi_only) will give better performance than the OpenMP backend (i.e. Makefile.kokkos_omp) because some of the overhead to make the code thread-safe is removed.

Note

The default for the package kokkos command is to use “threaded” communication. However, when running on CPUs, it will typically be faster to use “classic” non-threaded communication. Use the “-pk kokkos” command-line switch to change the default package kokkos options. See its doc page for details and default settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 16 spa_kokkos_mpi_only -k on -sf kk -pk kokkos comm classic -in in.collide # non-threaded comm

For OpenMP, the KOKKOS package uses data duplication (i.e.
thread-private arrays) by default to avoid thread-level write conflicts
in some compute styles. Data duplication is typically fastest for small
numbers of threads (i.e. 8 or less) but does increase memory footprint
and is not scalable to large numbers of threads. An alternative to data
duplication is to use thread-level atomics, which don’t require
duplication. When using the Kokkos Serial backend or the OpenMP backend
with a single thread, no duplication or atomics are used. For CUDA, the
KOKKOS package always uses atomics in these computes when necessary. The
use of atomics instead of duplication can be forced by compiling with
the “-DSPARTA_KOKKOS_USE_ATOMICS” compile switch.

5.3.8. Core and Thread Affinity:

When using multi-threading, it is important for performance to bind both
MPI tasks to physical cores, and threads to physical cores, so they do
not migrate during a simulation.

If you are not certain MPI tasks are being bound (check the defaults for
your MPI installation), binding can be forced with these flags:

OpenMPI 1.8: mpirun -np 2 -bind-to socket -map-by socket ./spa_openmpi ...
Mvapich2 2.0: mpiexec -np 2 -bind-to socket -map-by socket ./spa_mvapich ...

For binding threads with KOKKOS OpenMP, use thread affinity environment
variables to force binding. With OpenMP 3.1 (gcc 4.7 or later, intel 12
or later) setting the environment variable OMP_PROC_BIND=true should be
sufficient. In general, for best performance with OpenMP 4.0 or better
set OMP_PROC_BIND=spread and OMP_PLACES=threads. For binding threads
with the KOKKOS pthreads option, compile SPARTA the KOKKOS HWLOC=yes
option as described below.

5.3.9. Running on Knight’s Landing (KNL) Intel Xeon Phi:

Here is a quick overview of how to use the KOKKOS package for the Intel
Knight’s Landing (KNL) Xeon Phi:

KNL Intel Phi chips have 68 physical cores. Typically 1 to 4 cores are
reserved for the OS, and only 64 or 66 cores are used. Each core has 4
hyperthreads, so there are effectively N = 256 (4*64) or N = 264 (4*66)
cores to run on. The product of MPI tasks * OpenMP threads/task should
not exceed this limit, otherwise performance will suffer. Note that with
the KOKKOS package you do not need to specify how many KNLs there are
per node; each KNL is simply treated as running some number of MPI
tasks.

Examples of mpirun commands that follow these rules are shown below.

Intel KNL node with 64 cores (256 threads/node via 4x hardware threading):
mpirun -np 64 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 1 node, 64 MPI tasks/node, 4 threads/task
mpirun -np 66 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 1 node, 66 MPI tasks/node, 4 threads/task
mpirun -np 32 spa_kokkos_phi -k on t 8 -sf kk -in in.collide # 1 node, 32 MPI tasks/node, 8 threads/task
mpirun -np 512 -ppn 64 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 8 nodes, 64 MPI tasks/node, 4 threads/task

The -np setting of the mpirun command sets the number of MPI tasks/node.
The “-k on t Nt” command-line switch sets the number of threads/task as
Nt. The product of these two values should be N, i.e. 256 or 264.

Note

The default for the package kokkos command is to use “threaded” communication. However, when running on KNL, it will typically be faster to use “classic” non-threaded communication. Use the “-pk kokkos” command-line switch to change the default package kokkos options. See its doc page for details and default settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 64 spa_kokkos_phi -k on t 4 -sf kk -pk kokkos comm classic -in in.collide # non-threaded comm

Note

MPI tasks and threads should be bound to cores as described above for CPUs.

Note

To build with Kokkos support for Intel Xeon Phi coprocessors such as Knight’s Corner (KNC), your system must be configured to use them in “native” mode, not “offload” mode.

Running on GPUs:

Use the “-k” command-line switch to
specify the number of GPUs per node, and the number of threads per MPI
task. Typically the -np setting of the mpirun command should set the
number of MPI tasks/node to be equal to the # of physical GPUs on the
node. You can assign multiple MPI tasks to the same GPU with the KOKKOS
package, but this is usually only faster if significant portions of the
input script have not been ported to use Kokkos. Using CUDA MPS is
recommended in this scenario. As above for multi-core CPUs (and no GPU),
if N is the number of physical cores/node, then the number of MPI
tasks/node should not exceed N.

-k on g Ng

Here are examples of how to use the KOKKOS package for GPUs, assuming
one or more nodes, each with two GPUs.

mpirun -np 2 spa_kokkos_cuda -k on g 2 -sf kk -in in.collide # 1 node, 2 MPI tasks/node, 2 GPUs/node
mpirun -np 32 -ppn 2 spa_kokkos_cuda -k on g 2 -sf kk -in in.collide # 16 nodes, 2 MPI tasks/node, 2 GPUs/node (32 GPUs total)

Note

The default for the package kokkos command is to use “parallel” reduction of statistics along with threaded communication. However, using “atomic” reduction is typically faster for GPUs. Use the “-pk kokkos” command-line switch to change the default package kokkos options.
See its doc page for details and default settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 2 spa_kokkos_cuda -k on g 2 -sf kk -pk kokkos reduction atomic -in in.collide # set reduction = atomic

Note

Using OpenMP threading and CUDA together is currently not possible with the SPARTA KOKKOS package.

Note

For good performance of the KOKKOS package on GPUs, you must have Kepler generation GPUs (or later). The Kokkos library exploits texture cache options not supported by Telsa generation GPUs (or older).

Note

When using a GPU, you will achieve the best performance if your input script does not use fix or compute styles which are not yet Kokkos-enabled. This allows data to stay on the GPU for multiple timesteps, without being copied back to the host CPU.
Invoking a non-Kokkos fix or compute, or performing I/O for stat or dump output will cause data to be copied back to the CPU incurring a performance penalty.

Run with the KOKKOS package by editing an input script:

Alternatively the effect of the “-sf” or “-pk” switches can be
duplicated by adding the package kokkos or suffix kk commands to your input script.

The discussion above for building SPARTA with the KOKKOS package, the
mpirun/mpiexec command, and setting appropriate thread are the same.

You must still use the “-k on” command-line switch to enable the KOKKOS package, and
specify its additional arguments for hardware options appropriate to
your system, as documented above.

You can use the suffix kk command, or you can
explicitly add a “kk” suffix to individual styles in your input script,
e.g.

collide vss/kk air ar.vss

You only need to use the package kokkos command if
you wish to change any of its option defaults, as set by the “-k on”
command-line switch.

Speed-ups to expect:

The performance of KOKKOS running in different modes is a function of
your hardware, which KOKKOS-enable styles are used, and the problem
size.

Generally speaking, when running on CPUs only, with a single thread per MPI task, the
performance difference of a KOKKOS style and (un-accelerated) styles
(MPI-only mode)is typically small (less than 20%).

See the Benchmark page [http://sparta.sandia.gov/bench.html] of the
SPARTA web site for performance of the KOKKOS package on different
hardware.

5.3.10. Advanced Kokkos options:

There are other allowed options when building with the KOKKOS package.
A few options are listed here; for a full list of all options,
please refer to the Kokkos documentation.
As above, these options can be set as variables on the command line,
in a Makefile, or in a CMake presets file. For default CMake values,
see cmake -LH | grep -i kokkos.

The CMake option Kokkos_ENABLE_{OPTION} or the makefile setting KOKKOS_DEVICE={OPTION} sets the
parallelization method used for Kokkos code (within SPARTA).
For example, the CMake option Kokkos_ENABLE_SERIAL=ON or the makefile setting KOKKOS_DEVICES=SERIAL
means that no threading will be used. The CMake option Kokkos_ENABLE_OPENMP=ON or the
makefile setting KOKKOS_DEVICES=OPENMP means that OpenMP threading will be
used. The CMake option Kokkos_ENABLE_CUDA=ON or the makefile setting
KOKKOS_DEVICES=CUDA means an NVIDIA GPU running CUDA will be used.

As described above, the CMake option Kokkos_ARCH_{TYPE}=ON or the makefile setting KOKKOS_ARCH={TYPE} enables compiler switches needed when compiling for a specific hardware:

As above, they can be set either as variables on the make command line
or in Makefile.machine. This is the full list of options, including
those discussed above. Each takes a value shown below. The default value
is listed, which is set in the /lib/kokkos/Makefile.kokkos file.

	Arch-ID

	HOST or GPU

	Description

	AMDAVX

	HOST

	AMD 64-bit x86 CPU (AVX 1)

	EPYC

	HOST

	AMD EPYC Zen class CPU (AVX 2)

	ARMV80

	HOST

	ARMv8.0 Compatible CPU

	ARMV81

	HOST

	ARMv8.1 Compatible CPU

	ARMV8THUNDERX

	HOST

	ARMv8 Cavium ThunderX CPU

	ARMV8THUNDERX2

	HOST

	ARMv8 Cavium ThunderX2 CPU

	WSM

	HOST

	Intel Westmere CPU (SSE 4.2)

	SNB

	HOST

	Intel Sandy/Ivy Bridge CPU (AVX 1)

	HSW

	HOST

	Intel Haswell CPU (AVX 2)

	BDW

	HOST

	Intel Broadwell Xeon E-class CPU (AVX 2 + transactional mem)

	SKX

	HOST

	Intel Sky Lake Xeon E-class HPC CPU (AVX512 + transactional mem)

	KNC

	HOST

	Intel Knights Corner Xeon Phi

	KNL

	HOST

	Intel Knights Landing Xeon Phi

	BGQ

	HOST

	IBM Blue Gene/Q CPU

	POWER7

	HOST

	IBM POWER7 CPU

	POWER8

	HOST

	IBM POWER8 CPU

	POWER9

	HOST

	IBM POWER9 CPU

	KEPLER30

	GPU

	NVIDIA Kepler generation CC 3.0 GPU

	KEPLER32

	GPU

	NVIDIA Kepler generation CC 3.2 GPU

	KEPLER35

	GPU

	NVIDIA Kepler generation CC 3.5 GPU

	KEPLER37

	GPU

	NVIDIA Kepler generation CC 3.7 GPU

	MAXWELL50

	GPU

	NVIDIA Maxwell generation CC 5.0 GPU

	MAXWELL52

	GPU

	NVIDIA Maxwell generation CC 5.2 GPU

	MAXWELL53

	GPU

	NVIDIA Maxwell generation CC 5.3 GPU

	PASCAL60

	GPU

	NVIDIA Pascal generation CC 6.0 GPU

	PASCAL61

	GPU

	NVIDIA Pascal generation CC 6.1 GPU

	VOLTA70

	GPU

	NVIDIA Volta generation CC 7.0 GPU

	VOLTA72

	GPU

	NVIDIA Volta generation CC 7.2 GPU

	TURING75

	GPU

	NVIDIA Turing generation CC 7.5 GPU

	AMPERE80

	GPU

	NVIDIA Ampere generation CC 8.0 GPU

	VEGA900

	GPU

	AMD GPU MI25 GFX900

	VEGA906

	GPU

	AMD GPU MI50/MI60 GFX906

	INTEL_GEN

	GPU

	Intel GPUs Gen9+

The CMake option Kokkos_ENABLE_CUDA_{OPTION} or the makefile setting KOKKOS_CUDA_OPTIONS=*OPTION* are
additional options for CUDA. For example, the CMake option Kokkos_ENABLE_CUDA_UVM=ON or the makefile setting KOKKOS_CUDA_OPTIONS=”enable_lambda,force_uvm” enables the use of CUDA “Unified Virtual Memory” (UVM) in Kokkos. UVM allows to one to use the host CPU memory to supplement the memory used on the GPU (with some performance penalty) and thus enables running larger problems that would otherwise not fit into the RAM on the GPU. Please note, that the SPARTA KOKKOS package must always be compiled with the CMake option Kokkos_ENABLE_CUDA_LAMBDA=ON or the makefile setting KOKKOS_CUDA_OPTIONS=enable_lambda when using GPUs. The CMake configuration will thus always enable it.

The CMake option Kokkos_ENABLE_DEBUG=ON or the makefile setting KOKKOS_DEBUG=yes is useful
when developing a Kokkos-enabled style within SPARTA. This option enables printing of run-time debugging
information that can be useful and also enables runtime bounds
checking on Kokkos data structures, but may slow down performance.

5.3.11. Restrictions:

Currently, there are no precision options with the KOKKOS package. All
compilation and computation is performed in double precision.

6. How-to discussions

The following sections describe how to perform common tasks using
SPARTA, as well as provide some techinical details about how SPARTA
works.

	2d simulations

	Axisymmetric simulations

	Running multiple simulations from one input script

	Output from SPARTA (stats, dumps, computes, fixes, variables)

	Visualizing SPARTA snapshots

	Library interface to SPARTA

	Coupling SPARTA to other codes

	Details of grid geometry in SPARTA

	Details of surfaces in SPARTA

	Restarting a simulation

	Using the ambipolar approximation

	Using multiple vibrational energy levels

	Surface elements: explicit, implicit, distributed

	Implicit surface ablation

	Transparent surface elements

The example input scripts included in the SPARTA distribution and
highlighted in Example problems of the manual also show how to setup
and run various kinds of simulations.

6.1. 2d simulations

In SPARTA, as in other DSMC codes, a 2d simulation means that particles
move only in the xy plane, but still have all 3 xyz components of
velocity. Only the xy components of velocity are used to advect the
particles, so that they stay in the xy plane, but all 3 components are
used to compute collision parameters, temperatures, etc. Here are the
steps to take in an input script to setup a 2d model.

	Use the dimension command to specify a 2d simulation.

	Make the simulation box periodic in z via the boundary command. This is the default.

	Using the create_box command, set the z boundaries of the box to values that straddle the z = 0.0 plane. I.e. zlo < 0.0 and zhi > 0.0. Typical values are -0.5 and 0.5, but regardless of the actual values, SPARTA computes the “volume” of 2d grid cells as if their z-dimension length is 1.0, in whatever units are defined. This volume is used with the global nrho setting to calculate numbers of particles to create or insert. It is also used to compute collision frequencies.

	If surfaces are defined via the read_surf command, use 2d objects defined by line segements.

Many of the example input scripts included in the SPARTA distribution are for 2d models.

6.2. Axisymmetric simulations

In SPARTA, an axi-symmetric model is a 2d model. An example input script is provided in the examples/axisymm directory.

An axi-symmetric problem can be setup using the following commands:

	Set dimension = 2 via the dimension command.

	Set the y-dimension lower boundary to “a” via the boundary command.

	The y-dimension upper boundary can be anything except “a” or “p” for periodic.

	Use the create_box command to define a 2d simulation box with ylo = 0.0.

If desired, grid cell weighting can be enabled via the global weight command.
The volume or radial setting can be used for axi-symmetric models.

Grid cell weighting affects how many particles per grid cell are created
when using the create_particles command and fix emit/face command variants.

During a run, it also triggers particle cloning and destruction as
particles move from grid cell to grid cell. This can be important for
inducing every grid cell to contain roughly the same number of
particles, even if cells are of varying volume, as they often are in
axi-symmetric models. Note that the effective volume of an axi-symmetric
grid cell is the volume its 2d area sweeps out when rotated around the
y=0 axis of symmetry.

6.3. Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual
commands for more details on how these examples work.

If “multiple simulations” means continue a previous simulation for more
timesteps, then you simply use the run command multiple
times. For example, this script

read_grid data.grid
create_particles 1000000
run 10000
run 10000
run 10000
run 10000
run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

If you wish to run totally different simulations, one after the other,
the clear command can be used in between them to re-initialize SPARTA. For example, this script

read_grid data.grid
create_particles 1000000
run 10000
clear
read_grid data.grid2
create_particles 500000
run 10000

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variable command, and next command, and jump command to loop over the same input script multiple times with different settings. For example, this script, named in.flow

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_grid data.grid
create_particles 1000000
run 10000
shell cd ..
clear
next d
jump in.flow

would run 8 simulations in different directories, using a data.grid file
in each directory. The same concept could be used to run the same system
at 8 different gas densities, using a density variable and storing the
output in different log and dump files, for example

variable a loop 8
variable rho index 1.0e18 4.0e18 1.0e19 4.0e19 1.0e20 4.0e20 1.0e21 4.0e21
log log.$a
read data.grid
global nrho ${rho}

other commands ...

compute myGrid grid all all n temp
dump 1 grid all 1000 dump.$a id c_myGrid
run 100000
clear # Restore all settings
next rho
next a
jump in.flow

All of the above examples work whether you are running on 1 or multiple
processors, but assumed you are running SPARTA on a single partition of
processors. SPARTA can be run on multiple partitions via the
“-partition” command-line switch as described in Command-line options of the manual.

In the last 2 examples, if SPARTA were run on 3 partitions, the same scripts could be used if the “index” and “loop” variables were replaced with universe-style variables, as described in the variable command. Also, the next rho and next a commands would need to be replaced with a single next a rho command. With these modifications, the 8 simulations of each script would
run on the 3 partitions one after the other until all were finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that partition would then start the 4th simulation, and so forth, until all 8 were completed.

6.4. Output from SPARTA (stats, dumps, computes, fixes, variables)

There are four basic kinds of SPARTA output:

	Statistical output, which is a list of quantities printed every few timesteps to the screen and logfile.

	Dump files, which contain snapshots of particle, grid cell, or surface element quantities and are written at a specified frequency.

	Certain fixes can output user-specified quantities directly to files: fix ave/time for time averaging, and fix print for single-line output of variables. Fix print can also output to the screen.

	Restart files.

A simulation prints one set of statistical output and (optionally)
restart files. It can generate any number of dump files and fix output
files, depending on what dump command and fix command you specify.

As discussed below, SPARTA gives you a variety of ways to determine what quantities are computed and printed when the statistics, dump, or fix commands listed above perform output. Throughout this discussion, note that users can also add their own computes and fixes to SPARTA (see Modifying & extending SPARTA) which can generate values that can then be output with these commands.

The following sub-sections discuss different SPARTA commands related to
output and the kind of data they operate on and produce:

	Global/per-particle/per-grid/per-surf data

	Scalar/vector/array data

	Statistical output

	Dump file output

	Fixes that write output files

	Computes that process output quantities

	Computes that generate values to output

	Fixes that generate values to output

	Variables that generate values to output

	Summary table of output options and data flow between commands

6.4.1. Global/per-particle/per-grid/per-surf data

Various output-related commands work with four different styles of data:
global, per particle, per grid, or per surf. A global datum is one or
more system-wide values, e.g. the temperature of the system. A per
particle datum is one or more values per partice, e.g. the kinetic
energy of each particle. A per grid datum is one or more values per grid
cell, e.g. the temperature of the particles in the grid cell. A per surf
datum is one or more values per surface element, e.g. the count of
particles that collided with the surface element.

6.4.2. Scalar/vector/array data

Global, per particle, per grid, and per surf datums can each come in
three kinds: a single scalar value, a vector of values, or a 2d array of
values. The doc page for a “compute” or “fix” or “variable” that
generates data will specify both the style and kind of data it produces,
e.g. a per grid vector.

When a quantity is accessed, as in many of the output commands discussed
below, it can be referenced via the following bracket notation, where ID
in this case is the ID of a compute. The leading c_ would be replaced
by f_ for a fix, or v_ for a variable:

	c_ID

	entire scalar, vector, or array

	c_ID[I]

	one element of vector, one column of array

	c_ID[I][J]

	one element of array

In other words, using one bracket reduces the dimension of the data once
(vector -> scalar, array -> vector). Using two brackets reduces the
dimension twice (array -> scalar). Thus a command that uses scalar
values as input can typically also process elements of a vector or
array.

6.4.3. Statistical output

The frequency and format of statistical output is set by the stats, stats_style command, and stats_modify command. The stats_style command also specifies what values are calculated and written out. Pre-defined keywords can be specified (e.g. np, ncoll, etc).
Three additional kinds of keywords can also be specified (c_ID, f_ID, v_name), where a compute command or fix command or variable command provides the value to be output. In each case, the compute, fix, or variable must generate global values to be used as an argument of the stats_style command.

6.4.4. Dump file output

Dump file output is specified by the dump command and dump_modify command. There are several pre-defined formats: dump particle, dump grid, dump surf, etc.

Each of these allows specification of what values are output with each particle, grid cell, or surface element. Pre-defined attributes can be specified (e.g. id, x, y, z for particles or id, vol for grid cells, etc). Three additional kinds of keywords can also be specified (c_ID, f_ID, v_name), where a compute command or fix command or variable command provides the values to be output. In each case, the compute, fix, or variable must generate per particle, per grid, or per surf values for input to the corresponding dump command.

6.4.5. Fixes that write output files

Two fixes take various quantities as input and can write output files:
fix ave/time and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors. The user specifies one or more quantities as input. These can be global compute values, global fix values, or variables of any style except the particle style which does not produce single values. Since a variable can refer to keywords used by the stats_style command (like particle count), a wide variety of quantities can be time averaged and/or output in this way.
If the inputs are one or more scalar values, then the fix generates a global scalar or vector of output. If the inputs are one or more vector values, then the fix generates a global vector or array of output. The time-averaged
output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file, periodically during a running simulation. The line can contain one or more variable values for any style variable except the particle style. As explained above, variables themselves can contain references to global values generated by stats keywords, computes, fixes, or other variables. Thus the fix print command is a means to output a wide variety of quantities separate from normal statistical or dump file output.

6.4.6. Computes that process output quantities

The compute reduce command takes one or more per particle or per grid or per surf vector quantities as inputs and “reduces” them (sum, min, max, ave) to scalar quantities. These are produced as output values which can be used as input to other output commands.

6.4.7. Computes that generate values to output

Every compute in SPARTA produces either global or per particle or per grid or per surf values. The values can be scalars or vectors or arrays of data. These values can be output using the other commands described in this section. The doc page for each compute command describes what it produces. Computes that produce per particle or per grid or per surf values have the word “particle” or “grid” or “surf” in their style name. Computes without those words produce global values.

6.4.8. Fixes that generate values to output

Some fixes in SPARTA produces either global or per particle or per grid or per surf values which can be accessed by other commands. The values can be scalars or vectors or arrays of data. These values can be output using the other commands described in this section. The doc page for each fix command tells whether it produces any output quantities and describes them.

Two fixes of particular interest for output are the fix ave/grid command and fix ave/surf command.

The fix ave/grid command enables time-averaging of per grid vectors. The user specifies one or more quantities as input. These can be per grid vectors or arrays from compute command or fix command. If the input is a single vector, then the fix generates a per grid vector. If the input is multiple vectors or array, the fix generates a per grid array. The time-averaged output of this fix can also be used as input to other output commands.

The fix ave/surf command enables time-averaging of per surf vectors. The user specifies one or more quantities as input. These can be per surf vectors or arrays from compute command or fix command. If the input is a single vector, then the fix generates a per surf vector. If the input is multiple vectors or array, the fix generates a per surf array. The time-averaged output of this fix can also be used as input to other output commands.

6.4.9. Variables that generate values to output

Variables defined in an input script generate either
a global scalar value or a per particle vector (only particle-style
variables) when it is accessed. The formulas used to define equal- and
particle-style variables can contain references to the
stats_style keywords and to global and per
particle data generated by computes, fixes, and other variables. The
values generated by variables can be output using the other commands
described in this section.

6.4.10. Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from SPARTA. Each command produces output data of some kind and/or writes data to a file. Most of the commands can take data from other commands as input. Thus you can link many of these commands together in pipeline form, where data produced by one command is used as input to another command and eventually written to the screen or to a file. Note that to hook two commands together the output and input data types must match, e.g. global/per atom/local data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector or array. Likewise a vector input could be a column of an array.

	Command

	Input

	Output

	stats_style

	global scalars

	screen, log file

	dump particle

	per particle vectors

	dump file

	dump grid

	per grid vectors

	dump file

	dump surf

	per surf vectors

	dump file

	fix print

	global scalar from variable

	screen, file

	print

	global scalar from variable

	screen

	computes

	N/A

	global or per particle/grid/surf scalar/vector/array

	fixes

	N/A

	global or per particle/grid/surf scalar/vector/array

	variables

	global scalars, per particle vectors

	global scalar, per particle vector

	compute reduce

	per particle/grid/surf vectors

	global scalar/vector

	fix ave/time

	global scalars/vectors

	global scalar/vector/array, file

	fix ave/grid

	per grid vectors/arrays

	per grid vector/array

	fix ave/surf

	per surf vectors/arrays

	per surf vector/array

6.5. Visualizing SPARTA snapshots

The dump image command can be used to do
on-the-fly visualization as a simulation proceeds. It works by creating
a series of JPG or PNG or PPM files on specified timesteps, as well as
movies. The images can include particles, grid cell quantities, and/or
surface element quantities. This is not a substitute for using an
interactive visualization package in post-processing mode, but
on-the-fly visualization can be useful for debugging or making a
high-quality image of a particular snapshot of the simulation.

The dump command can be used to create snapshots of particle, grid cell, or surface element data as a simulation runs. These can be post-processed and read in to other visualization packages.

A Python-based toolkit distributed by our group can read SPARTA particle dump files with columns of user-specified particle information, and convert them to various formats or pipe them into visualization software directly.
See the Pizza.py WWW site [http://www.sandia.gov/~sjplimp/pizza.html] for details. Specifically, Pizza.py can convert SPARTA particle dump files into PDB, XYZ, Ensight [http://www.ensight.com], and VTK formats. Pizza.py can pipe SPARTA dump files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that do interactive 3d OpenGL visualization and one that creates SVG images of dump file snapshots.

Additional Pizza.py tools may be added that allow visualization of surface and grid cell information as output by SPARTA.

6.6. Library interface to SPARTA

As described in build-library, SPARTA can be built as a library, so that it can be called by another code, used in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to SPARTA that is provided in the files src/library.cpp and src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in a C++ application that was invoking SPARTA directly. The C++ code in the functions illustrates how to invoke internal SPARTA operations. Note that SPARTA classes are defined within a SPARTA namespace (SPARTA_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void sparta_open(int, char **, MPI_Comm, void **);
void sparta_close(void *);
void sparta_file(void *, char *);
char *sparta_command(void *, char *);

The sparta_open() function is used to initialize SPARTA, passing in a list of strings as if they were Command-line options when SPARTA is run in stand-alone mode from the command line, and a MPI communicator for SPARTA to run under. It returns a ptr to the SPARTA object that is created, and which is used in subsequent library calls. The sparta_open() function can be called multiple times, to create multiple instances of SPARTA.

SPARTA will run on the set of processors in the communicator. This means the calling code can run SPARTA on all or a subset of processors. For example, a wrapper script might decide to alternate between SPARTA and another code, allowing them both to run on all the processors. Or it might allocate half the processors to SPARTA and half to the other code and run both codes simultaneously before syncing them up periodically. Or it might instantiate multiple instances of SPARTA to perform different calculations.

The sparta_close() function is used to shut down an instance of SPARTA and free all its memory.

The sparta_file() and sparta_command() functions are used to pass a file or string to SPARTA as if it were an input script or single command in an input script. Thus the calling code can read or generate a series of SPARTA commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving the sparta_command() calls with other calls to extract information from SPARTA, perform its own operations, or call another code’s library.

Other useful functions are also included in library.cpp. For example:

void *sparta_extract_global(void *, char *);
void *sparta_extract_compute(void *, char *, int, int);
void *sparta_extract_variable(void *, char *, char *);

This can extract various global quantities from SPARTA as well as values calculated by a compute or variable. See the library.cpp file and its associated header file library.h for details.

Other functions may be added to the library interface as needed to allow reading from or writing to internal SPARTA data structures.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to SPARTA and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you add can in principle access or change any SPARTA data you wish. The examples/COUPLE and python directories have example C++ and C and Python codes which show how a driver code can link to SPARTA as a library, run SPARTA on a subset of processors, grab data from SPARTA, change it, and put it back into SPARTA.

Important

The examples/COUPLE dir has not been added to the distribution yet.

6.7. Coupling SPARTA to other codes

SPARTA is designed to allow it to be coupled to other codes. For example, a continuum finite element (FE) simulation might use SPARTA grid cell quantities as boundary conditions on FE nodal points, compute a FE solution, and return continuum flow conditions as boundary conditions for SPARTA to use.

SPARTA can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you’ll have to think about in the context of your application.

	Define a new fix command that calls the other code. In this scenario, SPARTA is the driver code. During its timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to SPARTA as a library. See Modifying & extending SPARTA of the documentation for info on how to add a new fix to SPARTA.

	Define a new SPARTA command that calls the other code. This is conceptually similar to method (1), but in this case SPARTA and the other code are on a more equal footing. Note that now the other code is not called during the timestepping of a SPARTA run, but between runs. The SPARTA input script can be used to alternate SPARTA runs with calls to the other code, invoked via the new command. The run command facilitates this with its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a system() call made by the command (assuming your parallel machine allows one or more processors to start up another program). In the latter case the stand-alone code could communicate with SPARTA thru files that the command writes and reads.

See Modifying & extending SPARTA of the documentation for how to add a new command to SPARTA.

	Use SPARTA as a library called by another code. In this case the other code is the driver and calls SPARTA as needed. Or a wrapper code could link and call both SPARTA and another code as libraries. Again, the run command has options that allow it to be invoked with minimal overhead (no setup or clean-up) if you wish to do multiple short runs, driven by another program.

Examples of driver codes that call SPARTA as a library are included in the examples/COUPLE directory of the SPARTA distribution; see examples/COUPLE/README for more details.

Important

The examples/COUPLE dir has not been added to the distribution yet.

Section 2.3 of the manual describes how to build SPARTA as a library. Once this is done, you can interface with SPARTA either via C++, C, Fortran, or Python (or any other language that supports a vanilla C-like interface). For example, from C++ you could create one (or more) “instances” of SPARTA, pass it an input script to process, or execute individual commands, all by invoking the correct class methods in SPARTA. From C or Fortran you can make function calls to do the same things. See Section 11 of the manual for a description of the Python wrapper provided with SPARTA that operates through the SPARTA library interface.

The files src/library.cpp and library.h contain the C-style interface to
SPARTA. See Section 6.6 of the manual for a description
of the interface and how to extend it for your needs.

Note that the sparta_open() function that creates an instance of SPARTA takes an MPI communicator as an argument. This means that instance of SPARTA will run on the set of processors in the communicator. Thus the calling code can run SPARTA on all or a subset of processors. For example, a wrapper script might decide to alternate between SPARTA and another code, allowing them both to run on all the processors. Or it might allocate half the processors to SPARTA and half to the other code and run both codes simultaneously before syncing them up periodically. Or it might instantiate multiple instances of SPARTA to perform different calculations.

6.8. Details of grid geometry in SPARTA

SPARTA overlays a grid over the simulation domain which is used to track particles and to co-locate particles in the same grid cell for performing collision and chemistry operations. Surface elements are also assigned to grid cells they intersect with, so that particle/surface collisions can be efficiently computed.

SPARTA uses a Cartesian hierarchical grid. Cartesian means that the faces of a grid cell, at any level of the hierarchy, are aligned with the Cartesian xyz axes. I.e. each grid cell is an axis-aligned pallelpiped or rectangular box.

The hierarchy of grid cells is defined for N levels, from 1 to N. The
entire simulation box is a single parent grid cell, conceptually at
level 0. It is subdivided into a regular grid of Nx by Ny by Nz cells
at level 1. “Regular” means all the Nx*Ny*Nz sub-divided cells within
any parent cell are the same size. Each of those cells can be a child
cell (no further sub-division) or it can be a parent cell which is
further subdivided into Nx by Ny by Nz cells at level 2. This can
recurse to as many levels as desired. Different cells can stop
recursing at different levels. The Nx,Ny,Nz values for each level of
the grid can be different, but they are the same for every grid cell
at the same level. The per-level Nx,Ny,Nz values are defined by the
create_grid command, read_grid command, or fix adapt command.

As described below, each child cell is assigned an ID which encodes
the cell’s logical position within in the hierarchical grid, as a
32-bit or 64-bit unsigned integer ID. The precision is set by the
-DSPARTA_BIG or -DSPARTA_SMALL or -DSPARTA_BIGBIG compiler switch, as
described in Section 2.2.2.5. The number of
grid levels that can be used depends on this precision and the
resolution of the grid at each level. For example, in a 3d
simulation, a level that is refined with a 2x2x2 sub-grid requires 4
bits of the ID. Thus a maximum of 8 levels can be used for 32-bit IDs
and 16 levels for 64-bit IDs.

This manner of defining a hierarchy grid allows for flexible grid cell refinement in any region of the simulation domain. E.g. around a surface, or in a high-density region of the gas flow. Also note that a 3d oct-tree (quad-tree in 2d) is a special case of the SPARTA hierarchical grid, where Nx = Ny = Nz = 2 is used at every level.

An example 2d hierarchical grid is shown in the diagram, for a circular surface object (in red) with the grid refined on the upwind side of the object (flow from left to right). The first level coarse grid is 18x10. 2nd level grid cells are defined in a subset of those cells with a 3x3 sub-division. A subset of the 2nd level cells contain 3rd level grid cells via a further 3x3 sub-division.

[image: image0]

In the rest of the SPARTA manual, the following terminology is used to
refer to the cells of the hierarchical grid. The flow region is the
portion of the simulation domain that is “outside” any surface objects
and is typically filled with particles.

	root cell = the simulation box itself

	parent cell = a grid cell that is sub-divided (root cell = parent cell)

	child cell = a grid cell that is not sub-divided further

	unsplit cell = a child cell not intersected by any surface elements

	cut cell = a child cell intersected by one or more surface elements,
one resulting flow region

	split cell = a child cell intersected by two or more surface
elemments, two or more resulting disjoint flow regions

	sub cell = one disjoint flow region portion of a split cell

In SPARTA, parent cells are only conceptual. They do not exist or
require memory. Child cells store various attributes and are
distributed across processors, so that each child cell is owned by
exactly one processor, as discussed below.

When surface objects are defined via the read_surf command, they intersect child cells. In this contex “intersection” by a surface element means a geometric overlap between the area of the surface element and the volume of the grid cell (or length of element and area of grid cell in 2d). Thus an intersection includes a surface triangle that only touches a grid cell on its face, edge, or at its corner point. When intersected by one or more surface elements, a child cell becomes one of 3 flavors: unsplit, cut, or split. A child cell not intersected by any surface elements is an unsplit cell. It can be entirely in the flow region or entirely inside a surface object. If a child cell is intersected so that it is partitioned into two contiguous volumes, one in the flow region, the other
inside a surface object, then it is a cut cell. This is the usual case. Note that either the flow volume or inside volume can be of size zero, if the surface only “touches” the grid cell, i.e. the intersection is only on a face, edge, or corner point of the grid cell. The left side of the diagram below is an example, where red represents the flow region. Sometimes a child cell can be partitioned by surface elements so that more than one contiguous flow region is created. Then it is a split cell. Additionally, each of the two or more contiguous flow regions is a sub cell of the split cell. The right side of the diagram shows a split cell with 3 sub cells.

[image: image1]

The union of (1) unsplit cells that are in the flow region (not entirely interior to a surface object) and (2) flow region portions of cut cells and (3) sub cells is the entire flow region of the simulation domain. These are the only kinds of child cells that store particles. Split cells and unsplit cells interior to surface objects have no particles.

Child cell IDs can be output in integer or string form by the dump command, using its id and idstr attributes. The integer form can also be output by the compute property/grid.

Here is how a grid cell ID is computed by SPARTA, either for parent or
child cells. Say the level 1 grid is a 10x10x20 sub-division (2000
cells) of the root cell. The level 1 cells are numbered from 1 to
2000 with the x-dimension varying fastest, then y, and finally the
z-dimension slowest. Now say the 374th (out of 2000, 14 in x, 19 in
y, 1 in z) level 1 cell has a 2x2x2 sub-division (8 cells), and
consider the 4th level 2 cell (2 in x, 2 in y, 1 in z) within the
374th cell. It could be a parent cell if it is further sub-divided,
or a child cell if not. In either case its ID is the same. The
rightmost 11 bits of the integer ID are encoded with 374. This is
because it requires 11 bits to represent 2000 cells (1 to 2000) at
level 1. The next 4 bits are used to encode 1 to 8, specifically 4 in
the case of this cell. Thus the cell ID in integer format is 4*2048 +
374 = 8566. In string format it will be printed as 4-374, with dashes
separating the levels.

Note that a child cell has the same ID whether it is unsplit, cut, or split. Currently, sub cells of a split cell also have the same ID, though that may change in the future.

The create_grid command, balance_grid command, and fix balance command determine the assignment of child cells to processors. If a child cell is assigned to a processor, that processor owns the cell whether it is an unsplit, cut, or split cell. It also owns any sub cells that are part of a split cell.

Depending on which assignment options in these commands are used, the child cells assigned to each processor will either be “clumped” or “dispersed”.

Clumped means each processor’s cells will be geometrically compact. Dispersed means the processor’s cells will be geometrically dispersed across the simulation domain and so they cannot be enclosed in a small bounding box.

An example of a clumped assignment is shown in this zoom-in of a 2d hierarchical grid with 5 levels, refined around a tilted ellipsoidal surface object (outlined in pink). One processor owns the grid cells colored orange. A compact bounding rectangle can be drawn around the orange cells which will contain only a few grid cells owned by other processors. By contrast a dispersed assignment could scatter orange grid cells throughout the entire simulation domain.

[image: image2]

It is important to understand the difference between the two kinds of assignments and the effects they can have on performance of a simulation. For example the create_grid command and read_grid command may produce dispersed assignments, depending on the options used, which can be converted to a clumped assignment by the balance_grid command.

Simulations typically run faster with clumped grid cell assignments. This is because the cost of communicating particles is reduced if particles that move to a neighboring grid cell often stay on-processor. Similarly, some stages of simulation setup may run faster with a clumped assignment. Examples are the finding of nearby ghost grid cells and the computation of surface element intersections with grid cells. The latter operation is invoked when the read_surf command is used.

If the spatial distribution of particles is highly irregular and/or dynamically changing, or if the computational work per grid cell is otherwise highly imbalanced, a clumped assignment of grid cells to processors may not lead to optimal balancing. In these scenarios a dispersed assignment of grid cells to processsors may run faster even with the overhead of increased particle communication. This is because randomly assigning grid cells to processors can balance the computational load in a statistical sense.

6.9. Details of surfaces in SPARTA

A SPARTA simulation can define one or more surface objects, each of which are read in via the read_surf. For 2d simulations a surface object is a collection of connected line segments. For 3d simulations it is a collection of connected triangles. The outward normal of lines or triangles, as defined in the surface file, points into the flow region of the simulation box which is typically filled with particles. Depending on the orientation, surface objects can thus be obstacles that particles flow around, or they can represent the outer boundary of an irregular shaped region which particles are inside of.

See the read_surf command doc page for a discussion of these topics:

	Requirement that a surface object be “watertight”, so that particles do not enter inside the surface or escape it if used as an outer boundary.

	Surface objects (one per file) that contain more than one physical object, e.g. two or more spheres in a single file.

	Use of geometric transformations (translation, rotation, scaling, inversion) to convert the surface object in a file into different forms for use in different simulations.

	Clipping a surface object to the simulation box to effectively use a portion of the object in a simulation, e.g. a half sphere instead of a full sphere.

	The kinds of surface objects that are illegal, including infinitely thin objects, ones with duplicate points, or multiple surface or physical objects that touch or overlap.

The read_surf command assigns an ID to the surface object in a file. This can be used to reference the surface elements in the object in other commands. For example, every surface object must have a collision model assigned to it so that particle bounces off the surface can be computed. This is done via the surf_modify command and surf_collide command.

As described in the previous Section Details of grid geometry in SPARTA, SPARTA overlays a grid over the simulation domain to track particles. Surface elements are also assigned to grid cells they intersect with, so that particle/surface collisions can be efficiently computed. Typically a grid cell size larger than the surface elements that intersect it may not desirable since it means flow around the surface object will not be well resolved. The size of the smallest surface element in the system is printed when the surface file is read. Note that if the surface object is clipped to the simulation box, small lines or triangles can result near the box boundary due to the clipping operation.

The maximum number of surface elements that can intersect a single child grid cell is set by the global surfmax command. The default limit is 100. The actual maximum number in any grid cell is also printed when the surface file is read. Values this large or larger may cause particle moves to become expensive, since each time a particle moves within that grid cell, possible collisions with all its overlapping surface elements must be computed.

6.10. Restarting a simulation

There are two ways to continue a long SPARTA simulation. Multiple run commands can be used in the same input script. Each run will continue from where the previous run left off. Or binary restart files can be saved to disk using the restart command. At a later time, these binary files can be read via a read_restart command in a new script.

Here is an example of a script that reads a binary restart file and then issues a new run command to continue where the previous run left off. It illustrates what settings must be made in the new script. Details are discussed in the documentation for the read_restart command and write_restart command.

Look at the in.collide input script provided in the bench directory of the SPARTA distribution to see the original script that this script is based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran for 130 steps, one at step 50, and one at step 100.

This script could be used to read the first restart file and re-run the last 80 timesteps:

read_restart tmp.restart.50

seed 12345
collide vss air ar.vss

stats 10
compute temp temp
stats_style step cpu np nattempt ncoll c_temp

timestep 7.00E-9
run 80

Note that the following commands do not need to be repeated because their settings are included in the restart file: dimension, global, boundary, create_box, create_grid, species, mixture. However these commands do need to be used, since their settings are not in the restart file: seed, collide, compute, fix, stats_style, timestep. The read_restart doc page gives details.

If you actually use this script to perform a restarted run, you will notice that the statistics output does not match exactly. On step 50, the collision counts are 0 in the restarted run, because the line is printed before the restarted simulation begins. The collision counts in subsequent steps are similar but not identical. This is because new random numbers are used for collisions in the restarted run. This affects all the randomized operations in a simulation, so in general you should only expect a restarted run to be statistically similar to the original run.

6.11. Using the ambipolar approximation

The ambipolar approximation is a computationally efficient way to model low-density plasmas which contain positively-charged ions and negatively-charged electrons. In this model, electrons are not free particles which move independently. This would require a simulation with a very small timestep due to electon’s small mass and high speed (1000x that of an ion or neutral particle).

Instead each ambipolar electron is assumed to stay “close” to its parent ion, so that the plasma gas appears macroscopically neutral. Each pair of particles thus moves together through the simulation domain, as if they were a single particle, which is how they are stored within SPARTA. This means a normal timestep can be used.

There are two stages during a timestep when the coupled particles are broken apart and treated as an independent ion and electron.

The first is during gas-phase collisions and chemistry. The ionized ambipolar particles in a grid cell are each split into two particles (ion and electron) and each can participate in two-body collisions with any other particle in the cell. Electron/electron collisions are actually not performed, but are tallied in the overall collision count (if using a collision mixture with a single group, not when using
multiple groups). If gas-phase chemistry is turned on, reactions involving ions and electrons can be specified, which include dissociation, ionization, exchange, and recombination reactions. At the end of the collision/chemsitry operations for the grid cell, there is still a one-to-one pairing between ambipolar ions and electrons. Each pair is recombined into a single particle.

The second is during collisions with surface (or the boundaries of the simulation box) if a surface reaction model is defined for the surface element or boundary. Just as with gas-phase chemistry, surface reactions involving ambipolar species can be defined. For example, an ambipolar ion/electron pair can re-combine into a neutral species during the collision.

Here are the SPARTA commands you can use to run a simulation using the ambipolar approximation. See the input scripts in examples/ambi for an example.

Note that you will likely need to use two (or more mixtures) as
arguments to various commands, one which includes the ambipolar electron
species, and one which does not. Example mixture command for doing this are shown below.

Use the fix ambipolar command to specify which species is the ambipolar electron and what (multiple) species are ambipolar ions. This is required for all the other options listed here to work. The fix defines two custom per-particles attributes, an integer vector called “ionambi” which stores a 1 for a particle if it is an ambipolar ion, and a 0 otherwise. And a floating-point array called “velambi” which stores a 3-vector with the velocity of the associated electron for each ambipolar ion or zeroes otherwise. Note that no particles should ever exist in the simulation with a species matching ambipolar electrons. Such particles are only generated (and destroyed) internally, as described above.

Use the collide_modify ambipolar yes command if you want to perform gas-phase collisions using the ambipolar model. This is not required. If you do this, you may also want to specify a mixture for the collide command which has two or more groups. If this is the case, the ambipolar electron species must be in a group by itself. The other group(s) can contain any combination of ion or neutral species. Note that putting the ambipolar electron species in its own group should improve the efficiency of the code due to the large disparity in electron versus ion/neutral velocities.

If you do this, DO use a mixture which includes the ambipolar electron species, so that electrons will participate in the collisions and reactions (if defined). You probably also want to specify a mixture for the collide command which has two or more groups. One group is for the ambipolar electron species, the other for ambipolar ions. Additional groups could exist for other species (e.g. neutrals), or those species could be part of the ion group. Putting the ambipolar electron species in its own group should improve the efficiency of the code due to the large disparity in electron versus ion/neutral velocities.

If you want to perform gas-phase chemistry for reactions involving ambipolar ions and electrons, use the react command with an input file of reactions that include the ambipolar electron and ion species defined by the fix ambipolar commmand. See the react command doc page for info the syntax required for ambipolar reactions. Their reactants and products must be listed in specific order.

When creating particles, either by the create_particles command or fix emit/face command variants, do NOT use a mixture that includes the ambipolar electron species. If you do this, you will create “free” electrons which are not coupled to an ambipolar ion. You can include ambipolar ions in the mixture. This will create ambipolar ions along with their associated electron. The electron will be assigned a velocity consistent with its mass and the temperature of the created particles. You can use the mixture copy and mixture delete commands to create a mixture that excludes only the ambipolar electron species, e.g.

mixture all copy noElectron
mixture noElectron delete e

If you want ambipolar ions to re-combine with their electrons when they collide with surfaces, use the surf_react command with an input file of surface reactions that includes recombination reactions like:

\[N^{+} + e \to N\]

See the surf_react command doc page for syntax details. A sample surface reaction data file is provided in data/air.surf. You assign the surface reaction model to surface or the simulation box boundaries via the surf_modify command and bound_modify command.

For diagnositics and output, you can use the compute count command and command-dump-particle. The compute count command generate counts of individual species, entire mixtures, and groups within mixtures. For example these commands will include counts of ambipolar ions in statistical output:

compute myCount O+ N+ NO+ e
stats_style step nsreact nsreactave cpu np c_myCount

Note that the count for species “e” = ambipolar electrons should alwas be zero, since those particles only exist during gas and surface collisions. The stats_style nsreact and nsreactave keywords print tallies of surface reactions taking place.

The dump particle command can output the custom particle
attributes defined by the fix ambipolar command. E.g. this command

dump 1 particle 1000 tmp.dump id type x y z p_ionambi p_velambi[2]

will output the ionambi flag = 1 for ambipolar ions, along with the vy
of their associated ambipolar electrons.

The read_restart doc page explains how to restart ambipolar simulations where a fix like fix ambipolar has been used to store extra per-particle properties.

6.12. Using multiple vibrational energy levels

DSMC models for collisions between one or more polyatomic species can
include the effect of multiple discrete vibrational levels, where a
collision transfers vibrational energy not just between the two
particles in aggregate but between the various levels defined for each
particle species.

This kind of model can be enabled in SPARTA using the following
commands:

	species … vibfile …

	collide_modify vibrate discrete

	fix vibmode

	dump particle p_vibmode

The species command with its vibfile option allows a separate file with per-species vibrational information to be read. See data/air.species.vib for an example of such a file.

Only species with 4,6,8 vibrational degrees of freedom, as defined in the species file read by the species command, need to be listed in the vibfile. These species have N modes, where N = degrees of freedom / 2. For each mode, a vibrational temperature, relaxation number, and degeneracy is defined in the vibfile. These quantities are used in the energy exchange formulas for each collision.

The collide_modify vibrate discrete command is
used to enable the discrete model. Other allowed settings are none and
smooth. The former turns off vibrational energy effects altogether.
The latter uses a single continuous value to represent vibrational
energy; no per-mode information is used.

The fix vibmode command is used to allocate
per-particle storage for the population of levels appropriate to the
particle’s species. This will be from 1 to 4 values for each species.
Note that this command must be used before particles are created via the
create_particles command to allow the level
populations for new particles to be set appropriately. The fix vibmode command doc page has more details.

The dump particle command can output the custom particle attributes defined by the fix vibmode command. E.g. this command

dump 1 particle 1000 tmp.dump id type x y z evib p_vibmode[1] p_vibmode[2] p_vibmode[3]

will output for each particle evib = total vibrational energy (summed across all levels), and the population counts for the first 3 vibrational energy levels. The vibmode count will be 0 for vibrational levels that do not exist for particles of a particular species.

The read_restart doc page explains how to restart simulations where a fix like fix vibmode has been used to store extra per-particle properties.

6.13. Surface elements: explicit, implicit, distributed

SPARTA can work with two kinds of surface elements: explicit and implicit. Explicit surfaces are lines (2d) or triangles (3d) defined in surface data files read by the read_surf command. An individual element can be any size; a single surface element can intersect many grid cells. Implicit surfaces are lines (2d) or triangles (3d) defined by grid corner point data files read by the read_isurf command. The corner point values define lines or triangles that are wholly contained with single grid cells.

Note that you cannot mix explicit and implicit surfaces in the same simulation.

The data and attributes of explicit surface elements can be stored in one of two ways. The default is for each processor to store a copy of all the elements. Memory-wise, this is fine for most models. The other option is distributed, where each processor only stores copies of surface elements assigned to grid cells it owns or has a ghost copy of. For models with huge numbers of surface elements, distributing them will use much less memory per processor. Note that a surface element requires about 150 bytes of storage, so storing a million requires about 150 MBytes.

Implicit surfaces are always stored in a distributed fashion. Each processor only stores a copy of surface elements assigned to grid cells it owns or has a ghost copy of. Note that 3d implicit surfs are not yet fully implemented. Specifically, the read_isurf command will not yet read and create them.

The global surfs command is used to specify the use of explicit versus implicit, and distributed versus non-distributed surface elements.

Unless noted, the following surface-related commands work with either explict or implicit surfaces, whether they are distributed or not. For large data sets, the read and write surf and isurf commands have options to use multiple files and/or operate in parallel which can reduce I/O times.

	adapt_grid

	compute_isurf/grid # for implicit surfs

	compute_surf # for explicit surfs

	dump surf

	dump image

	fix adapt/grid

	fix emit/surf

	group surf

	read_isurf # for implicit surfs

	read_surf # for explicit surfs

	surf_modify

	write_isurf # for implicit surfs

	write_surf

These command do not yet support distributed surfaces:

	move_surf

	fix move/surf

	remove_surf

6.14. Implicit surface ablation

The implicit surfaces described in the previous section can be used to
perform ablation simulations, where the set of implicit surface elements
evolve over time to model a receding surface. These are the relevant
commands:

	global surfs implicit

	read isurf

	fix ablate

	compute isurf/grid

	compute react/isurf/grid

	fix ave/grid

	write isurf

	write_surf

The read_isurf command takes a binary file as an argument which contains a pixelated (2d) or voxelated (3d) representation of the surface (e.g. a porous heat shield material). It reads the file and assigns the pixel/voxel values to corner points of a region of the SPARTA grid.

The read_isurf command also takes the ID of a fix ablate command as an argument. This fix is invoked to perform a Marching Squares (2d) or Marching Cubes (3d) algorithm to convert the corner point values to a set of line segments (2d) or triangles (3d) each of which is wholly contained in a grid cell. It also stores the per grid cell corner point values.

If the Nevery argument of the fix ablate command is 0, ablation is never performed, the implicit surfaces are static. If it is non-zero, an ablation operation is performed every Nevery steps. A per-grid cell value is used to decrement the corner point values in each grid cell. The values can be (1) from a compute such as compute isurf/grid which tallies statistics about gas particle collisions with surfaces within each grid cell. Or compute react/isurf/grid which tallies the number of surface reactions that take place. Or values can be (2) from a fix such as fix ave/grid <command-fix-ave-grid> which time averages these statistics over many timesteps. Or they can be (3) generated randomly, which is useful for debugging.

The decrement of grid corner point values is done in a manner that models recession of the surface elements within in each grid cell. All the current implicit surface elements are then discarded, and new ones are generated from the new corner point values via the Marching Squares or Marching Cubes algorithm.

Important

Ideally these algorithms should preserve the gas flow volume inferred by the previous surfaces and only add to it with the new surfaces. However there are a few cases for the 3d Marching Cubes algorithm where the gas flow volume is not strictly preserved. This can trap existing particles inside the new surfaces. Currently SPARTA checks for this condition and deletes the trapped particles.
In the future, we plan to modify the standard Marching Cubes algorithm to prevent this from happening. In our testing, the fraction of trapped particles in an ablation operation is tiny (around 0.005% or 5 in 100000). The number of deleted particles can be monitored as an output option by the fix ablate command.

The write_isurf command can be used to periodically write out a pixelated/voxelated file of corner point values, in the same format that the read_isurf command reads. Note that after ablation, corner point values are typically no longer integers, but floating point values. The read_isurf command and write_isurf command have options to work with both kinds of files. The write_surf command can also output implicit surface elements for visualization by tools such as ParaView which can read SPARTA surface element files after suitable post-processing. See the Section tools paraview doc page for more details.

6.15. Transparent surface elements

Transparent surfaces are useful for tallying flow statistics. Particles pass through them unaffected. However the flux of particles through those surface elements can be tallied and output.

Transparent surfaces are treated differently than regular surfaces. They do not need to be watertight. E.g. you can define a set of line segments that form a straight (or curved) line in 2d. Or a set of triangle that form a plane (or curved surface) in 3d. You can define multiple such surfaces, e.g. multiple disjoint planes, and tally flow statistics through each of them. To tally or sum the statistics separately, you may want to assign the triangles in each plane to a different surface group via the read_surf group or group surf commands.

Note that for purposes of collisions, transparent surface elements are one-sided. A collision is only tallied for particles passing through the outward face of the element. If you want to tally particles passing through in both directions, then define 2 transparent surfaces, with opposite orientation. Again, you may want to put the 2 surfaces in separate groups.

There also should be no restriction on transparent surfaces intersecting each other or intersecting regular surfaces. Though there may be some corner cases we haven’t thought about or tested.

These are the relevant commands. See their doc pages for details:

	read_surf transparent

	surf_collide transparent

	compute surf

The read_surf command with its transparent keyword is used to flag all the read-in surface elements as transparent. This means they must be in a file separate from regular non-transparent elements.

The surf_collide command must be used with its transparent model and assigned to all transparent surface elements via the surf_modify command.

The compute surf command can be used to tally
the count, mass flux, and energy flux of particles that pass through
transparent surface elements. These quantities can then be time averaged
via the fix ave/surf command or output via the
dump surf command in the usual ways, as described
in Section 6.4: Output from SPARTA (stats, dumps, computes, fixes, variables).

The examples/circle/in.circle.transparent script shows how to use these commands when modeling flow around a 2d circle. Two additional transparent line segments are placed in front of the circle to tally particle count and kinetic energy flux in both directions in front of the object. These are defined in the data.plane1 and data.plane2 files. The resulting tallies are output with the stats_style command. They could also be output with a dump command for more resolution if the 2 lines were each defined as multiple line segments.

7. Example problems

The SPARTA distribution includes an examples sub-directory with
several sample problems. Each problem is in a sub-directory of its
own. They are all small problems that run quickly, requiring at most a
couple of minutes to run on a desktop machine. Many are 2d so that
they run more quickly and can be easily visualized. Each problem has
an input script (in.*) and produces a log file (log.*) when it
runs. The data files they use for chemical species or reaction
parameters are copied from the data directory so the problems are
self-contained.

Sample log file outputs on different machines and different numbers of
processors are included in the directories to compare your answers to.
E.g. a log file like log.free.date.foo.P means it ran on P processors
of machine “foo”, using the dated SPARTA version.

If the “dump image” lines in each script are uncommented, a series of
image snapshots will be produced. Animations of several of the
examples can be viewed on the Movies section of the SPARTA WWW Site [http://sparta.sandia.gov].

These are the sample problems in the examples sub-directories. See the
examples/README file for more details.

	chem = chemistry in a 3d box

	circle = 2d flow around a circular object

	collide = collisional motion in a 3d box

	free = free molecular motion in a 3d box

	sphere = 3d flow around a sphere

	spiky = 2d flow around a spiky circle

	step = 2d flow around a staircase of steps

Here is how you might run and visualize one of the sample problems:

cd free
cp ../../src/spa_g++ . # copy SPARTA executable to this dir
spa_g++ < in.free # run the problem

Running the simulation produces the file log.sparta and optional
image.*.jpg. If you have the freely available ImageMagick toolkit on
your machine, you can run its “convert” command to create an animated
GIF, and visualize it from the FireFox browser as follows:

convert image*ppm movie.gif
firefox ./movie.gif

A similar command should work with other browsers. Or you can select
“Open File” under the File menu of your browser and load the animated
GIF file directly.

8. Performance & scalability

The SPARTA distribution includes a bench sub-directory with several sample problems. The Benchmarks page of the SPARTA WWW Site [http://sparta.sandia.gov] gives timing data for these problems run on different machines, for both strong and weak scaling scenarioes:

	free = free molecular flow in a box

	collide = collisional molecular flow in a box

	sphere = flow around a sphere

For each problem there is an input script and sample log file outputs on different machines and different numbers of processors. E.g. a log file like log.free.foo.1M.P means the the free molecular problem with 1 million grid cells ran on P processors of machine “foo”.

Each can be run as a serial benchmark (on one processor) or in parallel. In parallel, all the benchmarks can be run as a fixed-size problem, meaning the same problem is run on various numbers of processors (strong scaling). They can also be run as scaled-size problem, if the problem size is increased with the number of processors (weak scaling).

Here is an example of how to run the benchmark problems. See the bench/README file for more details.

	1-processor runs:

spa_g++ -v x 100 -v y 100 -v z 100 < in.free
spa_g++ -v x 100 -v y 100 -v z 100 < in.collide
spa_g++ -v x 50 -v y 50 -v z 50 < in.sphere

	32-processor runs:

mpirun -np 32 spa_g++ -v x 100 -v y 100 -v z 100 < in.free
mpirun -np 32 spa_g++ -v x 100 -v y 100 -v z 100 < in.collide
mpirun -np 32 spa_g++ -v x 50 -v y 50 -v z 50 < in.sphere

Note that the benchmark scripts define variables that can be set from
the command line that determine the size of problem that is run.
Specifically, the x,y,z variables specify the grid size (e.g.
100x100x100) that is used, and variable n specifies the number of
particles (10 per grid cell in this case).

9. Additional tools

SPARTA is designed to be a computational kernel for performing DSMC computations. Additional pre- and post-processing steps are often necessary to setup and analyze a simulation. A few additional tools are provided with the SPARTA distribution in the tools directory and are described briefly below.

Our group has also written and released a separate toolkit called Pizza.py [http://pizza.sandia.gov] which provides tools for doing setup, analysis, plotting, and visualization for SPARTA simulations. Pizza.py is written in Python [http://www.python.org] and is available for download from the Pizza.py web site [http://pizza.sandia.gov].

Some of the Pizza.py tools relevant to SPARTA are as follows:

	dump - read, write, manipulate particle dump files

	gl - 3d interactive visualization via OpenGL of dump or surface files

	sdata - read, write, manipulate surface files

	olog - read log files and extract columns of data

	vcr - VCR-style GUI for 3d interactive OpenGL visualization of dump
or surface files

The dump, sdata, and olog tools are included in the SPARTA distribution in the tools/pizza directory, and are used by some of the scripts discussed below.

This is the list of tools included in the tools directory of the SPARTA distribution. Each is described in more detail below.

	dump2cfg tool - convert a particle dump file to CFG format

	dump2xyz tool - convert a particle dump file to XYZ format

	grid_refine - refine a grid around a surface

	implicit_grid - create a random porous region with implicit surfaces

	jagged - create jagged 2d/3d surfaces with explicit surfaces

	log2txt - extract columns of info from a log file

	logplot - plot columns of info from a log file via GnuPlot

	paraview - converters of SPARTA data to ParaView [http://www.paraview.org] format

	stl2surf - convert an STL text file into a SPARTA surface file

	surf_create - create a surface file with simple objects

	surf_transform - transform surface via tranlate/scale/rotate operations

9.1. dump2cfg tool

This is a Python script that converts a SPARTA particle dump file into
extended CFG format so that it can be visualized by the
AtomEye [http://mt.seas.upenn.edu/Archive/Graphics/A] visualization
program. AtomEye is a very fast particle visualizer, capable of
interactive visualizations of millions of particles on a desktop
machine. It is commonly used in the materials modeling community.

See the header of the script for the syntax used to run it.

This script uses one or more of the “Pizza.py” tools provided in the
tools/pizza directory. See the tools/README file for info on how to set
an environment variable so that the Pizza.py tool files can be found by
Python, as well as instructions on various ways to run a Python script.

9.2. dump2xyz tool

This is a Python script that converts a SPARTA particle dump file into
XYZ format so that it can be visualized by various visualization
packages that read XYZ formatted files. An example is
VMD [http://www.ks.uiuc.edu/Research/vmd] package, commonly used in
the molecular dynamics modeling community.

See the header of the script for the syntax used to run it.

This script uses one or more of the “Pizza.py” tools provided in the
tools/pizza directory. See the tools/README file for info on how to set
an environment variable so that the Pizza.py tool files can be found by
Python, as well as instructions on various ways to run a Python script.

9.3. grid_refine tool

This is a Python script that creates a SPARTA grid file adapted around
the lines or triangles in a SPARTA surface file. The resulting grid file
can be read by the read_grid command. The surface
file can be read by the read_surf command.

See the header of the script for the various adaptivity options that are
supported, and the syntax used to run it.

9.4. implicit_grid tool

This is a Python script which can be used to generate binary files
representing porous media samples, as read by the
read_isurf command. The output files contain
randomized grid corner point values which induce implicit surfaces which
can contain huge numbers of surface elements. They are useful for stress
testing the implicit surface options in SPARTA, as selected by the
global surfs command.

See the header of the script for the syntax used to run it.

The examples/implicit directory uses these files as input.

9.5. jagged tools

These are 2 Python scripts (jagged2d.py and jagged3d.py) which can be
used to generate SPARTA surface files in a pattern that can be very
jagged. The surfaces can contain huge numbers of surface elements and be
read by the read_surf command. They are useful for
stress testing the explict surface options in SPARTA, including
distributed or non-distributed storage, as selected by the global surfs command.

See the header of the scripts for the syntax used to run them.

The examples/jagged directory uses these files as input.

9.6. log2txt tool

This is a Python script that reads a SPARTA log file, extracts selected
columns of statistical output, and writes them to a text file. It knows
how to concatenate log file info across multiple successive runs. The
columnar output can then be read by various plotting packages.

See the header of the script for the syntax used to run it.

This script uses one or more of the “Pizza.py” tools provided in the
tools/pizza directory. See the tools/README file for info on how to set
an environment variable so that the Pizza.py tool files can be found by
Python, as well as instructions on various ways to run a Python script.

9.7. logplot tool

This is a Python script that reads a SPARTA log file, extracts the
selected columns of statistical output, and plots them via the GnuPlot
program. It knows how to concatenate log file info across multiple
successive runs.

See the header of the script for the syntax used to run it. You must
have GnuPlot installed on your system to use this script. If you can
type “gnuplot” from the command line to start GnuPlot, it should work.
If not (e.g. because you need a path name), then edit these 2 lines as
needed in pizza/gnu.py:

except: PIZZA_GNUPLOT = "gnuplot"
except: PIZZA_GNUTERM = "x11"

For example, the first could become “/home/smith/bin/gnuplot”. The
second should only need changing if GnuPlot requires a different setting
to plot to your screen.

This script uses one or more of the “Pizza.py” tools provided in the
tools/pizza directory. See the tools/README file for info on how to set
an environment variable so that the Pizza.py tool files can be found by
Python, as well as instructions on various ways to run a Python script.

9.8. paraview tools

The tools/paraview directory has scripts which convert SPARTA grid and
surface data (input and output) to ParaView format.

ParaView [http://www.paraview.org] is a popular, powerful,
freely-available visualization package. You must have ParaView installed
to use the Python scripts. See tools/paraview/README for more details.

The scripts were developed by Tom Otahal (Sandia).

9.9. stl2surf tool

This is a Python script that reads a stereolithography (STL) text file
and converts it to a SPARTA surface file. STL files contain a collection
of triangles and can be created by various mesh-generation programs. The
format for SPARTA surface files is described on the
read_surf command doc page.

See the header of the script for the syntax used to run it, e.g.

% python stl2surf.py stlfile surffile

The script also checks the triangulated object to see if it is
“watertight” and issues a warning if it is not, since SPARTA will
perform the same check. The read_surf command doc
page explains what watertight means for 3d objects.

9.10. surf_create tool

This is a Python script that creates a SPARTA surface file containing
one or more simple objects whose surface is represented as triangules
(3d) or line segments (2d). Such files can be read by the
read_surf command. The 3d objects it supports are a
sphere, box, and spikysphere (randomized radius at each point). The 2d
objects it supports are a circle, rectangle, triangle, and spikycircly
(randomized radius at each point).

See the header of the script for the syntax used to run it.

9.11. surf_transform tool

This is a Python script that transforms a SPARTA surface file into a new
surface file using various operations supported by the
read_surf command. These operations include
translation, scaling, rotation, and inversion (changing which side of
the surface is inside vs outside).

See the header of the script for the syntax used to run it.

10. Modifying & extending SPARTA

This section describes how to extend SPARTA by modifying its source
code.

	Compute styles

	Fix styles

	Region styles

	Collision styles

	Surface collision styles

	Chemistry styles

	Dump styles

	Input script commands

SPARTA is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new feature to SPARTA and think it will be of general interest to users, please submit it to the developers [http://sparta.sandia.gov/authors.html] for inclusion in the released version of SPARTA.

The best way to add a new feature is to find a similar feature in SPARTA and look at the corresponding source and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the hi-level structure of SPARTA and its class organization, but functions (class methods) that do actual computations are written in vanilla C-style code and operate on simple C-style data structures (vectors, arrays, structs).

The new features described in this section require you to write a new C++ derived class. Creating a new class requires 2 files, a source code file (.cpp) and a header file (.h). The derived class must provide certain methods to work as a new option. Depending on how different your new feature is compared to existing features, you can either derive from the base class itself, or from a derived class that already exists. Enabling SPARTA to invoke the new class is as simple as putting the two source files in the src dir and re-building SPARTA.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature are in the 2 files you write, and thus shouldn’t make the rest of SPARTA more complex or cause side-effect bugs.

Here is a concrete example. Suppose you write 2 files collide_foo.cpp and collide_foo.h that define a new class CollideFoo that computes inter-particle collisions described in the classic 1997 paper by Foo, et al. If you wish to invoke those potentials in a SPARTA input script with a command like

collide foo mix-ID params.foo 3.0

then your collide_foo.h file should be structured as follows:

#ifdef COLLIDE_CLASS
 CollideStyle(foo,CollideFoo)
#else
 ... (class definition for CollideFoo) ...
#endif

where “foo” is the style keyword in the collid command, and CollideFoo is the class name defined in your collide_foo.cpp and collide_foo.h files.

When you re-build SPARTA, your new collision model becomes part of the executable and can be invoked with a collide command like the example above. Arguments like a mixture ID, params.foo (a file with collision parameters), and 3.0 can be defined and processed by your new class.

As illustrated by this example, many kinds of options are referred to in the SPARTA documentation as the “style” of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are also used by the rest of SPARTA. Virtual functions in the base class header file which are set = 0 are ones that must be defined in the new derived class to give it the functionality SPARTA expects. Virtual functions that are not set to 0 are functions that can be optionally defined.

Here are additional guidelines for modifying SPARTA and adding new functionality:

	Think about whether what you want to do would be better as a pre- or post-processing step. Many computations are more easily and more quickly done that way.

	Don’t do anything within the timestepping of a run that isn’t parallel. E.g. don’t accumulate a large volume of data on a single processor and analyze it. This runs the risk of seriously degrading the parallel efficiency.

If you have a question about how to compute something or about internal SPARTA data structures or algorithms, feel free to send an email to the developers [http://sparta.sandia.gov/authors.html].

	If you add something you think is generally useful, also send an email to the developers [http://sparta.sandia.gov/authors.html] so we can consider adding it to the SPARTA distribution.

10.1. Compute styles

Compute style commands calculate instantaneous properties of the simulated system. They can be global properties, or per particle or per grid cell or per surface element properties. The result can be single value or multiple values (global or per particle or per grid or per surf).

Here is a brief description of methods to define in a new derived class. See compute.h for details. All of these methods are optional.

	init

	initialization before a run

	compute_scalar

	compute a global scalar quantity

	compute_vector

	compute a global vector of quantities

	compute_per_particle

	compute one or more quantities per particle

	compute_per_grid

	compute one or more quantities per grid cell

	compute_per_surf

	compute one or more quantities per surface element

	surf_tally

	call when a particle hits a surface element

	boundary_tally

	call when a particle hits a simulation box boundary

	memory_usage

	tally memory usage

Note that computes with “/particle” in their style name calculate per
particle quantities, with “/grid” in their name calculate per grid cell
quantities, and with “/surf” in their name calculate per surface element
properties. All others calcuulate global quantities.

Flags may also need to be set by a compute to enable specific
properties. See the compute.h header file for one-line descriptions.

10.2. Fix styles

Fix style commands perform operations during the timestepping loop of a simulation. They can define methods which are invoked at different points within the timestep. They can be used to insert particles, perform load-balancing, or perform time-averaging of various quantities. They can also define and maintain new per-particle vectors and arrays that define quantities that move with particles when they migrate from processor to processor or when the grid is rebalanced or adapated. They can also produce output of various kinds, similar to compute command.

Here is a brief description of methods to define in a new derived class. See fix.h for details. All of these methods are optional, except setmask().

	setmask

	set flags that determine when the fix is called within a timestep

	init

	initialization before a run

	start_of_step

	called at beginning of timestep

	end_of_step

	called at end of timestep

	add_particle

	called when a particle is created

	surf_react

	called when a surface reaction occurs

	memory_usage

	tally memory usage

Flags may also need to be set by a fix to enable specific properties.
See the fix.h header file for one-line descriptions.

Fixes can interact with the Particle class to create new per-particle
vectors and arrays and access and update their values. These are the
relevant Particle class methods:

	add_custom

	add a new custom vector or array

	find_custom

	find a previously defined custom vector or array

	remove_custom

	remove a custom vector or array

See fix ambipolar for an example of how these are used. It defines an integer vector called “ionambi” to flag particles as ambipolar ions, and a floatin-point array called “velambi” to store the velocity vector for the associated electron.

10.3. Region styles

Region style commands define geometric regions within the simulation box. Other commands use regions to limit their computational scope.

Here is a brief description of methods to define in a new derived class. See region.h for details. The inside() method is required.

	inside:

	determine whether a point is inside/outside the region

10.4. Collision styles

Collision style commands define collision models that calculate interactions between particles in the same grid cell.

Here is a brief description of methods to define in a new derived class. See collide.h for details. All of these methods are required except init() and modify_params().

	init

	initialization before a run

	modify_params

	process style-specific options of the collide_modify command

	vremax_init

	estimate vremax settings

	attempt_collision

	compute # of collisions to attempt for entire cell

	attempt_collision

	compute # of collisions to attempt between 2 species groups

	test_collision

	determine if a collision bewteen 2 particles occurs

	setup_collision

	pre-computation before a 2-particle collision

	perform_collision

	calculate the outcome of a 2-particle collision

10.5. Surface collision styles

Surface collision style commands define collision models that calculate interactions between a particle and surface element.

Here is a brief description of methods to define in a new derived class. See surf_collide.h for details. All of these methods are required except dynamic().

	init

	initialization before a run

	collide

	perform a particle/surface-element collision

	dynamic

	allow surface property to change during a simulation

10.6. Chemistry styles

Particle/particle chemistry models in SPARTA are specified by reaction style commands which define lists of possible reactions
and their parameters.

Here is a brief description of methods to define in a new derived class.
See react.h for details. The init() method is optional; the attempt()
method is required.

	init

	initialization before a run

	attempt

	attempt a chemical reaction between two particles

10.7. Dump styles

Dump commands output snapshots of simulation data to a file periodically during a simulation, in a particular file format. Per particle, per grid cell, or per surface element data can be output.

Here is a brief description of methods to define in a new derived class. See dump.h for details. The init_style(), modify_param(), and memory_usage() methods are optional; all the others are required.

	init_style

	style-specific initialization before a run

	modify_param

	process style-specific options of the dump_modify command

	write_header

	write the header of a snapshot to a file

	count

	# of entities this processor will output

	pack

	pack a processor’s data into a buffer

	write_data

	write a buffer of data to a file

	memory_usage

	tally memory usage

10.8. Input script commands

New commands can be added to SPARTA that will be recognized in input scripts. For example, the create_particles command read_surf command, and run command are all implemented in this fashion. When such a command is encountered in an input script, SPARTA simply creates a class with the corresponding name, invokes the “command” method of the class, and passes it the arguments from the input script. The command() method can perform whatever operations it wishes on SPARTA data structures.

The single method the new class must define is as follows:

	command

	operations performed by the input script command

Of course, the new class can define other methods and variables as needed.

11. Python interface to SPARTA

This section describes how to build and use SPARTA via a Python
interface.

	Building SPARTA as a shared library

	Installing the Python wrapper into Python

	Extending Python with MPI to run in parallel

	Testing the Python-SPARTA interface

	Using SPARTA from Python

	Example Python scripts that use SPARTA

The SPARTA distribution includes the file python/sparta.py which wraps the library interface to SPARTA. This file makes it possible to run SPARTA, invoke SPARTA commands or give it an input script, extract SPARTA results, and modify internal SPARTA variables, either from a Python script or interactively from a Python prompt. You can do the former in serial or parallel. Running Python interactively in parallel does not generally work, unless you have a package installed that extends your Python to enable multiple instances of Python to read what you type.

Python [http://www.python.org] is a powerful scripting and programming language which can be used to wrap software like SPARTA and many other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or multiscale model.
See Coupling SPARTA to other codes of the manual and the examples/COUPLE directory of the distribution for more ideas about coupling SPARTA to other codes. See build-library about how to build SPARTA as a library, and Library interface to SPARTA for a description of the library interface provided in src/library.cpp and src/library.h and how to extend it for your needs. As described below, that interface is what is exposed to Python. It is designed to be easy to add functions to. This can extend the Python inteface as well. See details below.

Important

The examples/COUPLE dir has not been added to the distribution yet.

By using the Python interface, SPARTA can also be coupled with a GUI or other visualization tools that display graphs or animations in real time as SPARTA runs. Examples of such scripts are included in the python directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling rapid development and debugging of programs. If you use it to mostly invoke costly operations within SPARTA, such as running a simulation for a reasonable number of timesteps, then the overhead cost of invoking SPARTA thru Python will be negligible.

Before using SPARTA from a Python script, you need to do two things. You need to build SPARTA as a dynamic shared library, so it can be loaded by Python. And you need to tell Python how to find the library and the Python wrapper file python/sparta.py. Both these steps are discussed below. If you wish to run SPARTA in parallel from Python, you also need to extend your Python with MPI. This is also discussed below.

The Python wrapper for SPARTA uses the amazing and magical (to me) “ctypes” package in Python, which auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by simply typing “python” at a shell prompt.

11.1. Building SPARTA as a shared library

Instructions on how to build SPARTA as a shared library are given in build-library. A shared library is one that is dynamically loadable, which is what Python requires. On Linux this is a library file that ends in “.so”, not “.a”.

For make, from the src directory, type

make mode=shlib foo

For CMake, from the build directory, tyoe

cmake -C /path/to/sparta/cmake/presets/foo.cmake -DBUILD_SHARED_LIBS=ON /path/to/sparta/cmake
make

where foo is the machine target name, such as icc or g++ or serial. This should create the file libsparta_foo.so in the src directory, as well as a soft link libsparta.so, which is what the Python wrapper will load by default. Note that if you are building multiple machine versions of the shared library, the soft link is always set to the most recently built version.

If this fails, see Making SPARTA with optional packages for more details, especially if your SPARTA build uses auxiliary libraries like MPI which may not be built as shared libraries on your system.

11.2. Installing the Python wrapper into Python

For Python to invoke SPARTA, there are 2 files it needs to know about:

	python/sparta.py

	src/libsparta.so

Sparta.py is the Python wrapper on the SPARTA library interface.
Libsparta.so is the shared SPARTA library that Python loads, as
described above.

You can insure Python can find these files in one of two ways:

	set two environment variables

	run the python/install.py script

If you set the paths to these files as environment variables, you only
have to do it once. For the csh or tcsh shells, add something like this
to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/sparta/python
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/sparta/src

If you use the python/install.py script, you need to invoke it every
time you rebuild SPARTA (as a shared library) or make changes to the
python/sparta.py file.

You can invoke install.py from the python directory as

% python install.py [libdir] [pydir]

The optional libdir is where to copy the SPARTA shared library to; the default is /usr/local/lib. The optional pydir is where to copy the sparta.py file to; the default is the site-packages directory of the version of Python that is running the install script.

Note that libdir must be a location that is in your default LD_LIBRARY_PATH, like /usr/local/lib or /usr/lib. And pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you want to copy these files to non-standard locations, such as within your own user space, you will need to set your PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with “sudo”. If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]

You can also invoke install.py from the make command in the src directory as

% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with “sudo”. In this mode you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the SPARTA shared library (see this section below), you will need to manually copy files like libsparta_g++.so into the appropriate system directory. This is not needed if you set the LD_LIBRARY_PATH environment variable as described above.

11.3. Extending Python with MPI to run in parallel

If you wish to run SPARTA in parallel from Python, you need to extend your Python with an interface to MPI. This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be called from Python.

These include

	pyMPI [http://pympi.sourceforge.net/]

	maroonmpi [http://code.google.com/p/maroonmpi/]

	mpi4py [http://code.google.com/p/mpi4py/]

	myMPI [http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16]

	Pypar [http://code.google.com/p/pypar]

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of interactive input to multiple instances of Python running on different processors. The one exception is pyMPI, which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in place of “python” itself) as a result.

In principle any of these Python/MPI packages should work to invoke SPARTA in parallel and MPI calls themselves from a Python script which is itself running in parallel. However, when I downloaded and looked at a few of them, their documentation was incomplete and I had trouble with their installation. It’s not clear if some of the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with SPARTA, is Pypar. Pypar requires the ubiquitous Numpy package [http://numpy.scipy.org] be installed in your Python. After launching python, type

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball and from its top-level directory, type

python setup.py build
sudo python setup.py install

The “sudo” is only needed if required to copy Numpy files into your
Python distribution’s site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and
from its “source” directory, type

python setup.py build
sudo python setup.py install

Again, the “sudo” is only needed if required to copy Pypar files into your Python distribution’s site-packages directory.

If you have successully installed Pypar, you should be able to run Python and type

import pypar

without error. You should also be able to run python in parallel on a simple test script

% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

Important

To use Pypar and SPARTA in parallel from Python, you must insure both are using the same version of MPI. If you only have one MPI installed on your system, this is not an issue, but it can be if you have multiple MPIs. Your SPARTA build is explicit about which MPI it is using, since you specify the details in your lo-level src/MAKE/Makefile.foo file.
Pypar uses the “mpicc” command to find information about the MPI it uses to build against. And it tries to load “libmpi.so” from the LD_LIBRARY_PATH. This may or may not find the MPI library that SPARTA is using.
If you have problems running both Pypar and SPARTA together, this is an issue you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

11.4. Testing the Python-SPARTA interface

To test if SPARTA is callable from Python, launch Python interactively
and type:

>>> from sparta import sparta
>>> spa = sparta()

If you get no errors, you’re ready to use SPARTA from Python. If the 2nd
command fails, the most common error to see is

OSError: Could not load SPARTA dynamic library

which means Python was unable to load the SPARTA shared library. This
typically occurs if the system can’t find the SPARTA shared library or
one of the auxiliary shared libraries it depends on, or if something
about the library is incompatible with your Python. The error message
should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first
importing from the sparta.py file:

>>> from ctypes import CDLL
>>> CDLL("libsparta.so")

If an error occurs, carefully go thru the steps in build-library and above about building a shared library and about insuring Python can find the necessary two files it needs.

11.4.1. Test SPARTA and Python in serial:

To run a SPARTA test in serial, type these lines into Python interactively from the bench directory:

>>> from sparta import sparta
>>> spa = sparta()
>>> spa.file("in.free")

Or put the same lines in the file test.py and run it as

% python test.py

Either way, you should see the results of running the in.free benchmark on a single processor appear on the screen, the same as if you had typed something like:

spa_g++ < in.free

You can also pass command-line switches, e.g. to set input script variables, through the Python interface.

Replacing the “spa = sparta()” line above with

spa = sparta("","-v","x","100","-v","y","100","-v","z","100")

is the same as typing

spa_g++ -v x 100 -v y 100 -v z 100 < in.free

from the command line.

11.4.2. Test SPARTA and Python in parallel:

To run SPARTA in parallel, assuming you have installed the Pypar [http://datamining.anu.edu.au/~ole/pypar] package as discussed above, create a test.py file containing these lines:

import pypar
from sparta import sparta
spa = sparta()
spa.file("in.free")
print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize()

You can then run it in parallel as:

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

% mpirun -np 4 spa_g++ < in.lj

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run SPARTA independently on each of the P processors specified in the mpirun command. In this case you should get 4 sets of output, each showing that a SPARTA run was made on a single processor, instead of one set of output showing that SPARTA ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not working correctly.

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls directly in your Python script, as described in the Pypar documentation. The last line of your Python script should be pypar.finalize(), to insure MPI is shut down correctly.

11.4.3. Running Python scripts:

Note that any Python script (not just for SPARTA) can be invoked in one of several ways:

% python foo.script
% python -i foo.script
% foo.script

The last command requires that the first line of the script be something
like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and requires that you have made the script file executable:

% chmod +x foo.script

Without the “-i” flag, Python will exit when the script finishes. With the “-i” flag, you will be left in the Python interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only run Python interactively when running Python on a single processor, not in parallel.

11.5. Using SPARTA from Python

The Python interface to SPARTA consists of a Python “sparta” module, the source code for which is in python/sparta.py, which creates a “sparta” object, with a set of methods that can be invoked on that object. The sample Python code below assumes you have first imported the “sparta” module in your Python script, as follows:

from sparta import sparta

These are the methods defined by the sparta module. If you look at the file src/library.cpp you will see that they correspond one-to-one with calls you can make to the SPARTA library from a C++ or C or Fortran program.

spa = sparta() # create a SPARTA object using the default libsparta.so library
spa = sparta("g++") # create a SPARTA object using the libsparta_g++.so library
spa = sparta("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
spa = sparta("g++",list)

spa.close() # destroy a SPARTA object

spa.file(file) # run an entire input script, file = "in.lj"
spa.command(cmd) # invoke a single SPARTA command, cmd = "run 100"

fnum = spa.extract_global(name,type) # extract a global quantity
 # name = "dt", "fnum", etc
 # type = 0 = int
 # 1 = double

temp = spa.extract_compute(id,style,type) # extract value(s) from a compute
 # id = ID of compute
 # style = 0 = global data
 # 1 = per particle data
 # 2 = per grid cell data
 # 3 = per surf element data
 # type = 0 = scalar
 # 1 = vector
 # 2 = array

var = spa.extract_variable(name,flag) # extract value(s) from a variable
 # name = name of variable
 # flag = 0 = equal-style variable
 # 1 = particle-style variable

Important

Currently, the creation of a SPARTA object from within sparta.py does not take an MPI communicator as an argument. There should be a way to do this, so that the SPARTA instance runs on a subset of processors if desired, but I don’t know how to do it from Pypar. So for now, it runs with MPI_COMM_WORLD, which is all the processors.
If someone figures out how to do this with one or more of the Python wrappers for MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple SPARTA objects in your Python script,
and coordinate and run multiple simulations, e.g.

from sparta import sparta
spa1 = sparta()
spa2 = sparta()
spa1.file("in.file1")
spa2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_compute(), and extract_variable() methods return values or pointers to data structures internal to SPARTA.

For extract_global() see the src/library.cpp file for the list of valid
names. New names can easily be added. A double or integer is returned.
You need to specify the appropriate data type via the type argument.

For extract_compute(), the global, per particle, per grid cell, or per surface element results calulated by the compute can be accessed. What is returned depends on whether the compute calculates a scalar or vector or array. For a scalar, a single double value is returned. If the compute or fix calculates a vector or array, a pointer to the internal SPARTA data is returned, which you can use via normal Python subscripting. See Output from SPARTA (stats, dumps, computes, fixes, variables) of the manual for a discussion of global, per particle, per grid, and per surf data, and of scalar, vector, and array data types. See the doc pages for individual computes for a description of what they calculate and store.

For extract_variable(), an equal-style or particle-style variable is evaluated and its result returned.

For equal-style variables a single double value is returned and the group argument is ignored. For particle-style variables, a vector of doubles is returned, one value per particle, which you can use via normal Python subscripting.

As noted above, these Python class methods correspond one-to-one with the functions in the SPARTA library interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

	Add a new interface function to src/library.cpp and src/library.h.

	Rebuild SPARTA as a shared library.

	Add a wrapper method to python/sparta.py for this interface function.

	You should now be able to invoke the new interface function from a Python script. Isn’t ctypes amazing?

11.6. Example Python scripts that use SPARTA

There are demonstration Python scripts included in the python/examples directory of the SPARTA distribution, to illustrate what is possible when Python wraps SPARTA.

See the python/README file for more details.

12. Errors

This section describes the various kinds of errors you can encounter
when using SPARTA.

	Common problems

	Reporting bugs

	Error & warning messages

12.1. Common problems

If two SPARTA runs do not produce the same answer on different machines or different numbers of processors, this is typically not a bug. On different machines, there can be numerical round-off in the computations which causes slight differences in particle trajectories or the number of particles, which will lead to numerical divergence of the particle trajectores and averaged statistical quantities within a few 100s or few 1000s of timesteps. When running on different numbers of processors, random numbers are used in different ways, so two simulations can be immediately different.
However, the statistical properties (e.g. overall particle temperature or per grid cell temperature or surface energy flux) for the two runs on different machines or on different numbers of processors should still be similar.

A SPARTA simulation typically has two stages, setup and run. Most SPARTA errors are detected at setup time; others like running out of memory may not occur until the middle of a run.

SPARTA tries to flag errors and print informative error messages so you can fix the problem. Of course, SPARTA cannot figure out physics or numerical mistakes, like choosing too big a timestep or specifying erroneous collision parameters. If you run into errors that SPARTA doesn’t catch that you think it should flag, please send an email to the developers [http://sparta.sandia.gov/authors.html].

If you get an error message about an invalid command in your input script, you can determine what command is causing the problem by looking in the log.sparta file, or using the echo command in your script or “-echo screen” as a command-line argument to see it on the screen.
For a given command, SPARTA expects certain arguments in a specified order. If you mess this up, SPARTA will often flag the error, but it may read a bogus argument and assign a value that is valid, but not what you wanted.

Generally, SPARTA will print a message to the screen and logfile and exit gracefully when it encounters a fatal error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if the WARNING is important or not. A WARNING message that is generated in the middle of a run is only printed to the screen, not to the logfile, to avoid cluttering up statistical output. If SPARTA crashes or hangs without spitting out an error message first then it could be a bug (see the next section) or one of the following cases:

SPARTA runs in the available memory a processor allows to be allocated. Most reasonable runs are compute limited, not memory limited, so this shouldn’t be a bottleneck on most platforms. Almost all large memory allocations in the code are done via C-style malloc’s which will generate an error message if you run out of memory. Smaller chunks of memory are allocated via C++ “new” statements. If you are unlucky, you could run out of memory just when one of these small requests is made, in which case the code will crash or hang (in parallel), since SPARTA doesn’t trap on those errors.

Illegal arithmetic can cause SPARTA to run slow or crash. This is typically due to invalid physics and numerics that your simulation is computing. If you see wild statistical values or NaN values in your SPARTA output, something is wrong with your simulation. If you suspect this is happening, it is a good idea to print out statistical info frequently (e.g. every timestep) via the stats command so you can monitor what is happening. Visualizing the particle motion is also a good idea to insure your model is behaving as you expect.

In parallel, one way SPARTA can hang is due to how different MPI implementations handle buffering of messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two (usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

12.2. Reporting bugs

If you are confident that you have found a bug in SPARTA, please follow these steps.

Check the New features and bug fixes [http://sparta.sandia.gov/bug.html] section of the SPARTA web site [http://sparta.sandia.gov] to see if the bug has already been fixed.

If not, please email a description of the problem to the developers [http://sparta.sandia.gov/authors.html].

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest number of particles and grid cells and fewest number of processors and with the simplest and quick-to-run input script that reproduces the bug. And try to identify what command or combination of commands is causing the problem.

12.3. Error & warning messages

These are two alphabetic lists of the Errors and
Warnings messages SPARTA prints out and the reason why. If
the explanation here is not sufficient, the documentation for the
offending command may help. Error and warning messages also list the
source file and line number where the error was generated. For example,
this message

ERROR: Illegal create_particles command (create_particles.cpp:68)

means that line #68 in the file src/create_particles.cpp generated the
error. Looking in the source code may help you figure out what went
wrong.

12.3.1. Errors

	%d read_surf point pairs are too close

	A pair of points is very close together, relative to grid size,
inidicating the grid is too large, or an ill-formed surface.

	%d read_surf points are not inside simulation box

	If clipping was not performed, all points in surf file must be inside
(or on surface of) simulation box.

	%d surface elements not assigned to a collision model

	All surface elements must be assigned to a surface collision model
via the surf_modify command before a simulation is perforemd.

	All universe/uloop variables must have same # of values

	Self-explanatory.

	All variables in next command must be same style

	Self-explanatory.

	Arccos of invalid value in variable formula

	Argument of arccos() must be between -1 and 1.

	Arcsin of invalid value in variable formula

	Argument of arcsin() must be between -1 and 1.

	Axi-symmetry is not yet supported in SPARTA

	This error condition will be removed after axi-symmetry is fully
implemented.

	Axi-symmetry only allowed for 2d simulation

	Self-explanatory.

	BPG edge on more than 2 faces

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Bad grid of processors for balance_grid block

	Product of Px,Py,Pz must equal total number of processors.

	Bad grid of processors for create_grid

	For block style, product of Px,Py,Pz must equal total number of
processors.

	Bigint setting in spatype.h is invalid

	Size of bigint is less than size of smallint.

	Bigint setting in spatype.h is not compatible

	Bigint size stored in restart file is not consistent with SPARTA
version you are running.

	Both restart files must use % or neither

	Self-explanatory.

	Both sides of boundary must be periodic

	Cannot specify a boundary as periodic only on the lo or hi side. Must
be periodic on both sides.

	Bound_modify surf requires wall be a surface

	The box boundary must be of style “s” to be assigned a surface
collision model.

	Bound_modify surf_collide ID is unknown

	Self-explanatory.

	Boundary command after simulation box is defined

	The boundary command cannot be used after a read_data, read_restart,
or create_box command.

	Box boundary not assigned a surf_collide ID

	Any box boundary of style “s” must be assigned to a surface collision
model via the bound_modify command, before a simulation is performed.

	Box bounds are invalid

	The box boundaries specified in the read_data file are invalid. The
lo value must be less than the hi value for all 3 dimensions.

	Box ylo must be 0.0 for axi-symmetric model

	Self-explanatory.

	Can only use -plog with multiple partitions

	Self-explanatory. See doc page discussion of command-line switches.

	Can only use -pscreen with multiple partitions

	Self-explanatory. See doc page discussion of command-line switches.

	Cannot add new species to mixture all or species

	This is done automatically for these 2 mixtures when each species is
defined by the species command.

	Cannot balance grid before grid is defined

	Self-explanatory.

	Cannot create grid before simulation box is defined

	Self-explanatory.

	Cannot create grid when grid is already defined

	Self-explanatory.

	Cannot create particles before grid is defined

	Self-explanatory.

	Cannot create particles before simulation box is defined

	Self-explanatory.

	Cannot create/grow a vector/array of pointers for %s

	SPARTA code is making an illegal call to the templated memory
allocaters, to create a vector or array of pointers.

	Cannot create_box after simulation box is defined

	A simulation box can only be defined once.

	Cannot open VSS parameter file %s

	Self-explantory.

	Cannot open dir to search for restart file

	Using a “*” in the name of the restart file will open the current
directory to search for matching file names.

	Cannot open dump file

	The output file for the dump command cannot be opened. Check that the
path and name are correct.

	Cannot open file %s

	The specified file cannot be opened. Check that the path and name are
correct. If the file is a compressed file, also check that the gzip
executable can be found and run.

	Cannot open file variable file %s

	The specified file cannot be opened. Check that the path and name are
correct.

	Cannot open fix ave/time file %s

	The specified file cannot be opened. Check that the path and name are
correct.

	Cannot open fix print file %s

	The output file generated by the fix print command cannot be opened

	Cannot open gzipped file

	SPARTA was compiled without support for reading and writing gzipped
files through a pipeline to the gzip program with -DSPARTA_GZIP.

	Cannot open input script %s

	Self-explanatory.

	Cannot open log.sparta

	The default SPARTA log file cannot be opened. Check that the
directory you are running in allows for files to be created.

	Cannot open logfile

	The SPARTA log file named in a command-line argument cannot be
opened. Check that the path and name are correct.

	Cannot open logfile %s

	The SPARTA log file specified in the input script cannot be opened.
Check that the path and name are correct.

	Cannot open print file %s

	Self-explanatory.

	Cannot open reaction file %s

	Self-explanatory.

	Cannot open restart file %s

	The specified file cannot be opened. Check that the path and name are
correct. If the file is a compressed file, also check that the gzip
executable can be found and run.

	Cannot open screen file

	The screen file specified as a command-line argument cannot be
opened. Check that the directory you are running in allows for files
to be created.

	Cannot open species file %s

	Self-explanatory.

	Cannot open universe log file

	For a multi-partition run, the master log file cannot be opened.
Check that the directory you are running in allows for files to be
created.

	Cannot open universe screen file

	For a multi-partition run, the master screen file cannot be opened.
Check that the directory you are running in allows for files to be
created.

	Cannot read grid before simulation box is defined

	Self-explanatory.

	Cannot read grid when grid is already defined

	Self-explanatory.

	Cannot read_restart after simulation box is defined

	The read_restart command cannot be used after a read_data,
read_restart, or create_box command.

	Cannot read_surf after particles are defined

	This is because the newly read surface objects may enclose particles.

	Cannot read_surf before grid ghost cells are defined

	This needs to be documented if keep this restriction.

	Cannot read_surf before grid is defined

	Self-explantory.

	Cannot redefine variable as a different style

	An equal-style variable can be re-defined but only if it was
originally an equal-style variable.

	Cannot reset timestep with a time-dependent fix defined

	The timestep cannot be reset when a fix that keeps track of elapsed
time is in place.

	Cannot run 2d simulation with nonperiodic Z dimension

	Use the boundary command to make the z dimension periodic in order to
run a 2d simulation.

	Cannot set global surfmax when surfaces already exist

	This setting must be made before any surfac elements are read via the
read_surf command.

	Cannot use collide_modify with no collisions defined

	A collision style must be specified first.

	Cannot use cwiggle in variable formula between runs

	This is a function of elapsed time.

	Cannot use dump_modify fileper without % in dump file name

	Self-explanatory.

	Cannot use dump_modify nfile without % in dump file name

	Self-explanatory.

	Cannot use fix inflow in y dimension for axisymmetric

	This is because the y dimension boundaries cannot be inflow
boundaries for an axisymmetric model.

	Cannot use fix inflow in z dimension for 2d simulation

	Self-explanatory.

	Cannot use fix inflow n > 0 with perspecies yes

	This is because the perspecies option calculates the number of
particles to insert itself.

	Cannot use fix inflow on periodic boundary

	Self-explanatory.

	Cannot use group keyword with mixture all or species

	This is because the groups for these 2 mixtures are pre-defined.

	Cannot use include command within an if command

	Self-explanatory.

	Cannot use non-rcb fix balance with a grid cutoff

	This is because the load-balancing will generate a partitioning of
cells to processors that is dispersed and which will not work with a
grid cutoff >= 0.0.

	Cannot use ramp in variable formula between runs

	This is because the ramp() function is time dependent.

	Cannot use specified create_grid options with more than one level

	When defining a grid with more than one level, the other create_grid
keywords (stride, clump, block, etc) cannot be used. The child grid
cells will be assigned to processors in round-robin order as
explained on the create_grid doc page.

	Cannot use swiggle in variable formula between runs

	This is a function of elapsed time.

	Cannot use vdisplace in variable formula between runs

	This is a function of elapsed time.

	Cannot use weight cell radius unless axisymmetric

	An axisymmetric model is required for this style of cell weighting.

	Cannot use write_restart fileper without % in restart file name

	Self-explanatory.

	Cannot use write_restart nfile without % in restart file name

	Self-explanatory.

	Cannot weight cells before grid is defined

	Self-explanatory.

	Cannot write grid when grid is not defined

	Self-explanatory.

	Cannot write restart file before grid is defined

	Self-explanatory.

	Cell ID has too many bits

	Cell IDs must fit in 32 bits (SPARTA small integer) or 64 bits
(SPARTA big integer), as specified by the -DSPARTA_SMALL,
-DSPARTA_BIG, or -DSPARTA_BIGBIG options in the low-level Makefile
used to build SPARTA. See Section 2.2 of the manual for details.
And see Section 6.8 for details on how cell IDs are formatted.

	Cell type mis-match when marking on neigh proc

	Grid cell marking as inside, outside, or overlapping with surface
elements failed. Please report the issue to the SPARTA developers.

	Cell type mis-match when marking on self

	Grid cell marking as inside, outside, or overlapping with surface
elements failed. Please report the issue to the SPARTA developers.

	Cellint setting in spatype.h is not compatible

	Cellint size stored in restart file is not consistent with SPARTA
version you are running.

	Collision mixture does not contain all species

	The specified mixture must contain all species in the simulation so
that they can be assigned to collision groups.

	Collision mixture does not exist

	Self-explantory.

	Compute ID for compute reduce does not exist

	Self-explanatory.

	Compute ID for fix ave/grid does not exist

	Self-explanatory.

	Compute ID for fix ave/surf does not exist

	Self-explanatory.

	Compute ID for fix ave/time does not exist

	Self-explanatory.

	Compute ID must be alphanumeric or underscore characters

	Self-explanatory.

	Compute boundary mixture ID does not exist

	Self-explanatory.

	Compute grid mixture ID does not exist

	Self-explanatory.

	Compute reduce compute array is accessed out-of-range

	An index for the array is out of bounds.

	Compute reduce compute calculates global or surf values

	The compute reduce command does not operate on this kind of values.
The variable command has special functions that can reduce global
values.

	Compute reduce compute does not calculate a per-grid array

	This is necessary if a column index is used to specify the compute.

	Compute reduce compute does not calculate a per-grid vector

	This is necessary if no column index is used to specify the compute.

	Compute reduce compute does not calculate a per-particle array

	This is necessary if a column index is used to specify the compute.

	Compute reduce compute does not calculate a per-particle vector

	This is necessary if no column index is used to specify the compute.

	Compute reduce fix array is accessed out-of-range

	An index for the array is out of bounds.

	Compute reduce fix calculates global values

	A fix that calculates peratom or local values is required.

	Compute reduce fix does not calculate a per-grid array

	This is necessary if a column index is used to specify the fix.

	Compute reduce fix does not calculate a per-grid vector

	This is necessary if no column index is used to specify the fix.

	Compute reduce fix does not calculate a per-particle array

	This is necessary if a column index is used to specify the fix.

	Compute reduce fix does not calculate a per-particle vector

	This is necessary if no column index is used to specify the fix.

	Compute reduce fix does not calculate a per-surf array

	This is necessary if a column index is used to specify the fix.

	Compute reduce fix does not calculate a per-surf vector

	This is necessary if no column index is used to specify the fix.

	Compute reduce replace requires min or max mode

	Self-explanatory.

	Compute reduce variable is not particle-style variable

	This is the only style of variable that can be reduced.

	Compute sonine/grid mixture ID does not exist

	Self-explanatory.

	Compute surf mixture ID does not exist

	Self-explanatory.

	Compute used in variable between runs is not current

	Computes cannot be invoked by a variable in between runs. Thus they
must have been evaluated on the last timestep of the previous run in
order for their value(s) to be accessed. See the doc page for the
variable command for more info.

	Could not create a single particle

	The specified position was either not inside the simulation domain or
not inside a grid cell with no intersections with any defined surface
elements.

	Could not find compute ID to delete

	Self-explanatory.

	Could not find dump grid compute ID

	Self-explanatory.

	Could not find dump grid fix ID

	Self-explanatory.

	Could not find dump grid variable name

	Self-explanatory.

	Could not find dump image compute ID

	Self-explanatory.

	Could not find dump image fix ID

	Self-explanatory.

	Could not find dump modify compute ID

	Self-explanatory.

	Could not find dump modify fix ID

	Self-explanatory.

	Could not find dump modify variable name

	Self-explanatory.

	Could not find dump particle compute ID

	Self-explanatory.

	Could not find dump particle fix ID

	Self-explanatory.

	Could not find dump particle variable name

	Self-explanatory.

	Could not find dump surf compute ID

	Self-explanatory.

	Could not find dump surf fix ID

	Self-explanatory.

	Could not find dump surf variable name

	Self-explanatory.

	Could not find fix ID to delete

	Self-explanatory.

	Could not find split point in split cell

	This is an error when calculating how a grid cell is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Could not find stats compute ID

	Compute ID specified in stats_style command does not exist.

	Could not find stats fix ID

	Fix ID specified in stats_style command does not exist.

	Could not find stats variable name

	Self-explanatory.

	Could not find surf_modify sc-ID

	Self-explanatory.

	Could not find surf_modify surf-ID

	Self-explanatory.

	Could not find undump ID

	A dump ID used in the undump command does not exist.

	Cound not find dump_modify ID

	Self-explanatory.

	Create_box z box bounds must straddle 0.0 for 2d simulations

	Self-explanatory.

	Create_grid nz value must be 1 for a 2d simulation

	Self-explanatory.

	Create_particles global option not yet implemented

	Self-explantory.

	Create_particles mixture ID does not exist

	Self-explanatory.

	Create_particles single requires z = 0 for 2d simulation

	Self-explanatory.

	Create_particles species ID does not exist

	Self-explanatory.

	Created incorrect # of particles: %ld versus %ld

	The create_particles command did not function properly.

	Delete region ID does not exist

	Self-explanatory.

	Did not assign all restart particles correctly

	One or more particles in the restart file were not assigned to a
processor. Please report the issue to the SPARTA developers.

	Did not assign all restart split grid cells correctly

	One or more split grid cells in the restart file were not assigned to
a processor. Please report the issue to the SPARTA developers.

	Did not assign all restart sub grid cells correctly

	One or more sub grid cells in the restart file were not assigned to a
processor. Please report the issue to the SPARTA developers.

	Did not assign all restart unsplit grid cells correctly

	One or more unsplit grid cells in the restart file were not assigned
to a processor. Please report the issue to the SPARTA developers.

	Dimension command after simulation box is defined

	The dimension command cannot be used after a read_data, read_restart,
or create_box command.

	Divide by 0 in variable formula

	Self-explanatory.

	Dump every variable returned a bad timestep

	The variable must return a timestep greater than the current
timestep.

	Dump grid and fix not computed at compatible times

	Fixes generate values on specific timesteps. The dump grid output
does not match these timesteps.

	Dump grid compute does not calculate per-grid array

	Self-explanatory.

	Dump grid compute does not compute per-grid info

	Self-explanatory.

	Dump grid compute vector is accessed out-of-range

	Self-explanatory.

	Dump grid fix does not compute per-grid array

	Self-explanatory.

	Dump grid fix does not compute per-grid info

	Self-explanatory.

	Dump grid fix vector is accessed out-of-range

	Self-explanatory.

	Dump grid variable is not grid-style variable

	Self-explanatory.

	Dump image and fix not computed at compatible times

	Fixes generate values on specific timesteps. The dump image output
does not match these timesteps.

	Dump image cannot use grid and gridx/gridy/gridz

	Can only use grid option or one or more of grid x,y,z options by
themselves, not together.

	Dump image compute does not have requested column

	Self-explanatory.

	Dump image compute does not produce a vector

	Self-explanatory.

	Dump image compute is not a per-grid compute

	Self-explanatory.

	Dump image compute is not a per-surf compute

	Self-explanatory.

	Dump image fix does not have requested column

	Self-explanatory.

	Dump image fix does not produce a vector

	Self-explanatory.

	Dump image fix does not produce per-grid values

	Self-explanatory.

	Dump image fix does not produce per-surf values

	Self-explanatory.

	Dump image persp option is not yet supported

	Self-explanatory.

	Dump image requires one snapshot per file

	Use a “*” in the filename.

	Dump modify compute ID does not compute per-particle array

	Self-explanatory.

	Dump modify compute ID does not compute per-particle info

	Self-explanatory.

	Dump modify compute ID does not compute per-particle vector

	Self-explanatory.

	Dump modify compute ID vector is not large enough

	Self-explanatory.

	Dump modify fix ID does not compute per-particle array

	Self-explanatory.

	Dump modify fix ID does not compute per-particle info

	Self-explanatory.

	Dump modify fix ID does not compute per-particle vector

	Self-explanatory.

	Dump modify fix ID vector is not large enough

	Self-explanatory.

	Dump modify variable is not particle-style variable

	Self-explanatory.

	Dump particle and fix not computed at compatible times

	Fixes generate values on specific timesteps. The dump particle output
does not match these timesteps.

	Dump particle compute does not calculate per-particle array

	Self-explanatory.

	Dump particle compute does not calculate per-particle vector

	Self-explanatory.

	Dump particle compute does not compute per-particle info

	Self-explanatory.

	Dump particle compute vector is accessed out-of-range

	Self-explanatory.

	Dump particle fix does not compute per-particle array

	Self-explanatory.

	Dump particle fix does not compute per-particle info

	Self-explanatory.

	Dump particle fix does not compute per-particle vector

	Self-explanatory.

	Dump particle fix vector is accessed out-of-range

	Self-explanatory.

	Dump particle variable is not particle-style variable

	Self-explanatory.

	Dump surf and fix not computed at compatible times

	Fixes generate values on specific timesteps. The dump surf output
does not match these timesteps.

	Dump surf compute does not calculate per-surf array

	Self-explanatory.

	Dump surf compute does not compute per-surf info

	Self-explanatory.

	Dump surf compute vector is accessed out-of-range

	Self-explanatory.

	Dump surf fix does not compute per-surf array

	Self-explanatory.

	Dump surf fix does not compute per-surf info

	Self-explanatory.

	Dump surf fix vector is accessed out-of-range

	Self-explanatory.

	Dump surf variable is not surf-style variable

	Self-explanatory.

	Dump_modify buffer yes not allowed for this style

	Not all dump styles allow dump_modify buffer yes. See the dump_modify
doc page.

	Dump_modify region ID does not exist

	Self-explanatory.

	Duplicate cell ID in grid file

	Parent cell IDs must be unique.

	Edge not part of 2 vertices

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Edge part of invalid vertex

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Edge part of same vertex twice

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Empty brackets in variable

	There is no variable syntax that uses empty brackets. Check the
variable doc page.

	Failed to allocate %ld bytes for array %s

	The SPARTA simulation has run out of memory. You need to run a
smaller simulation or on more processors.

	Failed to open FFmpeg pipeline to file %s

	The specified file cannot be opened. Check that the path and name are
correct and writable and that the FFmpeg executable can be found and
run.

	Failed to reallocate %ld bytes for array %s

	The SPARTA simulation has run out of memory. You need to run a
smaller simulation or on more processors.

	File variable could not read value

	Check the file assigned to the variable.

	Fix ID for compute reduce does not exist

	Self-explanatory.

	Fix ID for fix ave/grid does not exist

	Self-explanatory.

	Fix ID for fix ave/surf does not exist

	Self-explanatory.

	Fix ID for fix ave/time does not exist

	Self-explanatory.

	Fix ID must be alphanumeric or underscore characters

	Self-explanatory.

	Fix ave/grid compute array is accessed out-of-range

	Self-explanatory.

	Fix ave/grid compute does not calculate a per-grid array

	Self-explanatory.

	Fix ave/grid compute does not calculate a per-grid vector

	Self-explanatory.

	Fix ave/grid compute does not calculate per-grid values

	Self-explanatory.

	Fix ave/grid fix array is accessed out-of-range

	Self-explanatory.

	Fix ave/grid fix does not calculate a per-grid array

	Self-explanatory.

	Fix ave/grid fix does not calculate a per-grid vector

	Self-explanatory.

	Fix ave/grid fix does not calculate per-grid values

	Self-explanatory.

	Fix ave/grid variable is not grid-style variable

	Self-explanatory.

	Fix ave/surf compute array is accessed out-of-range

	Self-explanatory.

	Fix ave/surf compute does not calculate a per-surf array

	Self-explanatory.

	Fix ave/surf compute does not calculate a per-surf vector

	Self-explanatory.

	Fix ave/surf compute does not calculate per-surf values

	Self-explanatory.

	Fix ave/surf fix array is accessed out-of-range

	Self-explanatory.

	Fix ave/surf fix does not calculate a per-surf array

	Self-explanatory.

	Fix ave/surf fix does not calculate a per-surf vector

	Self-explanatory.

	Fix ave/surf fix does not calculate per-surf values

	Self-explanatory.

	Fix ave/surf variable is not surf-style variable

	Self-explanatory.

	Fix ave/time cannot use variable with vector mode

	Variables produce scalar values.

	Fix ave/time columns are inconsistent lengths

	Self-explanatory.

	Fix ave/time compute array is accessed out-of-range

	An index for the array is out of bounds.

	Fix ave/time compute does not calculate a scalar

	Self-explantory.

	Fix ave/time compute does not calculate a vector

	Self-explantory.

	Fix ave/time compute does not calculate an array

	Self-explanatory.

	Fix ave/time compute vector is accessed out-of-range

	The index for the vector is out of bounds.

	Fix ave/time fix array is accessed out-of-range

	An index for the array is out of bounds.

	Fix ave/time fix does not calculate a scalar

	Self-explanatory.

	Fix ave/time fix does not calculate a vector

	Self-explanatory.

	Fix ave/time fix does not calculate an array

	Self-explanatory.

	Fix ave/time fix vector is accessed out-of-range

	The index for the vector is out of bounds.

	Fix ave/time variable is not equal-style variable

	Self-explanatory.

	Fix command before simulation box is defined

	The fix command cannot be used before a read_data, read_restart, or
create_box command.

	Fix for fix ave/grid not computed at compatible time

	Fixes generate values on specific timesteps. Fix ave/grid is
requesting a value on a non-allowed timestep.

	Fix for fix ave/surf not computed at compatible time

	Fixes generate their values on specific timesteps. Fix ave/surf is
requesting a value on a non-allowed timestep.

	Fix for fix ave/time not computed at compatible time

	Fixes generate their values on specific timesteps. Fix ave/time is
requesting a value on a non-allowed timestep.

	Fix in variable not computed at compatible time

	Fixes generate their values on specific timesteps. The variable is
requesting the values on a non-allowed timestep.

	Fix inflow mixture ID does not exist

	Self-explanatory.

	Fix inflow used on outflow boundary

	Self-explanatory.

	Fix used in compute reduce not computed at compatible time

	Fixes generate their values on specific timesteps. Compute reduce is
requesting a value on a non-allowed timestep.

	Found edge in same direction

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Found no restart file matching pattern

	When using a “*” in the restart file name, no matching file was
found.

	Gravity in y not allowed for axi-symmetric model

	Self-explanatory.

	Gravity in z not allowed for 2d

	Self-explanatory.

	Grid cell corner points on boundary marked as unknown = %d

	Corner points of grid cells on the boundary of the simulation domain
were not all marked successfully as inside, outside, or overlapping
with surface elements. Please report the issue to the SPARTA
developers.

	Grid cells marked as unknown = %d

	Grid cell marking as inside, outside, or overlapping with surface
elements did not successfully mark all cells. Please report the issue
to the SPARTA developers.

	Grid cutoff is longer than box length in a periodic dimension

	This is not allowed. Reduce the size of the cutoff specified by the
global gridcut command.

	Grid in/out other-mark error %d

	Grid cell marking as inside, outside, or overlapping with surface
elements failed. Please report the issue to the SPARTA developers.

	Grid in/out self-mark error %d for icell %d, icorner %d, connect %d %d, other cell %d, other corner %d, values %d %d

	A grid cell was incorrectly marked as inside, outside, or overlapping
with surface elements. Please report the issue to the SPARTA
developers.

	Grid-style variables are not yet implemented

	Self-explanatory.

	Illegal … command

	Self-explanatory. Check the input script syntax and compare to the
documentation for the command. You can use -echo screen as a
command-line option when running SPARTA to see the offending line.

	Inconsistent surface to grid mapping in read_restart

	When surface elements were mapped to grid cells after reading a
restart file, an inconsitent count of elements in a grid cell was
found, as compared to the original simulation, which should not
happen. Please report the issue to the SPARTA developers.

	Incorrect format of parent cell in grid file

	Number of words in a parent cell line was not the expected number.

	Incorrect line format in VSS parameter file

	Number of parameters in a line read from file is not valid.

	Incorrect line format in species file

	Line read did not have expected number of fields.

	Incorrect line format in surf file

	Self-explanatory.

	Incorrect point format in surf file

	Self-explanatory.

	Incorrect triangle format in surf file

	Self-explanatory.

	Index between variable brackets must be positive

	Self-explanatory.

	Input line quote not followed by whitespace

	An end quote must be followed by whitespace.

	Invalid Boolean syntax in if command

	Self-explanatory.

	Invalid Nx,Ny,Nz values in grid file

	A Nx or Ny or Nz value for a parent cell is <= 0.

	Invalid SPARTA restart file

	The file does not appear to be a SPARTA restart file since it does
not have the expected magic string at the beginning.

	Invalid attribute in dump grid command

	Self-explanatory.

	Invalid attribute in dump modify command

	Self-explantory.

	Invalid attribute in dump particle command

	Self-explanatory.

	Invalid attribute in dump surf command

	Self-explanatory.

	Invalid balance_grid style for non-uniform grid

	Some balance styles can only be used when the grid is uniform. See
the command doc page for details.

	Invalid call to ComputeGrid::post_process_grid()

	This indicates a coding error. Please report the issue to the SPARTA
developers.

	Invalid call to ComputeSonineGrid::post_process_grid()

	This indicates a coding error. Please report the issue to the SPARTA
developers.

	Invalid cell ID in grid file

	A cell ID could not be converted into numeric format.

	Invalid character in species ID

	The only allowed characters are alphanumeric, an underscore, a plus
sign, or a minus sign.

	Invalid collide style

	The choice of collision style is unknown.

	Invalid color in dump_modify command

	The specified color name was not in the list of recognized colors.
See the dump_modify doc page.

	Invalid color map min/max values

	The min/max values are not consistent with either each other or with
values in the color map.

	Invalid command-line argument

	One or more command-line arguments is invalid. Check the syntax of
the command you are using to launch SPARTA.

	Invalid compute ID in variable formula

	The compute is not recognized.

	Invalid compute property/grid field for 2d simulation

	Fields that reference z-dimension properties cannot be used in a 2d
simulation.

	Invalid compute style

	Self-explanatory.

	Invalid dump frequency

	Dump frequency must be 1 or greater.

	Invalid dump grid field for 2d simulation

	Self-explanatory.

	Invalid dump image filename

	The file produced by dump image cannot be binary and must be for a
single processor.

	Invalid dump image persp value

	Persp value must be >= 0.0.

	Invalid dump image theta value

	Theta must be between 0.0 and 180.0 inclusive.

	Invalid dump image zoom value

	Zoom value must be > 0.0.

	Invalid dump movie filename

	The file produced by dump movie cannot be binary or compressed and
must be a single file for a single processor.

	Invalid dump style

	The choice of dump style is unknown.

	Invalid dump surf field for 2d simulation

	Self-explanatory.

	Invalid dump_modify threshhold operator

	Operator keyword used for threshold specification in not recognized.

	Invalid fix ID in variable formula

	The fix is not recognized.

	Invalid fix ave/time off column

	Self-explantory.

	Invalid fix style

	The choice of fix style is unknown.

	Invalid flag in grid section of restart file

	Unrecognized entry in restart file.

	Invalid flag in header section of restart file

	Unrecognized entry in restart file.

	Invalid flag in layout section of restart file

	Unrecognized entry in restart file.

	Invalid flag in particle section of restart file

	Unrecognized entry in restart file.

	Invalid flag in peratom section of restart file

	The format of this section of the file is not correct.

	Invalid flag in surf section of restart file

	Unrecognized entry in restart file.

	Invalid image up vector

	Up vector cannot be (0,0,0).

	Invalid immediate variable

	Syntax of immediate value is incorrect.

	Invalid keyword in compute property/grid command

	Self-explantory.

	Invalid keyword in stats_style command

	One or more specified keywords are not recognized.

	Invalid math function in variable formula

	Self-explanatory.

	Invalid math/special function in variable formula

	Self-explanatory.

	Invalid point index in line

	Self-explanatory.

	Invalid point index in triangle

	Self-explanatory.

	Invalid react style

	The choice of reaction style is unknown.

	Invalid reaction coefficients in file

	Self-explanatory.

	Invalid reaction formula in file

	Self-explanatory.

	Invalid reaction style in file

	Self-explanatory.

	Invalid reaction type in file

	Self-explanatory.

	Invalid read_surf command

	Self-explanatory.

	Invalid read_surf geometry transformation for 2d simulation

	Cannot perform a transformation that changes z cooridinates of points
for a 2d simulation.

	Invalid region style

	The choice of region style is unknown.

	Invalid replace values in compute reduce

	Self-explanatory.

	Invalid reuse of surface ID in read_surf command

	Surface IDs must be unique.

	Invalid run command N value

	The number of timesteps must fit in a 32-bit integer. If you want to
run for more steps than this, perform multiple shorter runs.

	Invalid run command start/stop value

	Self-explanatory.

	Invalid run command upto value

	Self-explanatory.

	Invalid special function in variable formula

	Self-explanatory.

	Invalid species ID in species file

	Species IDs are limited to 15 characters.

	Invalid stats keyword in variable formula

	The keyword is not recognized.

	Invalid surf_collide style

	Self-explanatory.

	Invalid syntax in variable formula

	Self-explanatory.

	Invalid use of library file() function

	This function is called thru the library interface. This error should
not occur. Contact the developers if it does.

	Invalid variable evaluation in variable formula

	A variable used in a formula could not be evaluated.

	Invalid variable in next command

	Self-explanatory.

	Invalid variable name

	Variable name used in an input script line is invalid.

	Invalid variable name in variable formula

	Variable name is not recognized.

	Invalid variable style in special function next

	Only file-style or atomfile-style variables can be used with next().

	Invalid variable style with next command

	Variable styles equal and world cannot be used in a next command.

	Ionization and recombination reactions are not yet implemented

	This error conditions will be removed after those reaction styles are
fully implemented.

	Irregular comm recv buffer exceeds 2 GB

	MPI does not support a communication buffer that exceeds a 4-byte
integer in size.

	Label wasn’t found in input script

	Self-explanatory.

	Log of zero/negative value in variable formula

	Self-explanatory.

	MPI_SPARTA_BIGINT and bigint in spatype.h are not compatible

	The size of the MPI datatype does not match the size of a bigint.

	Migrate cells send buffer exceeds 2 GB

	MPI does not support a communication buffer that exceeds a 4-byte
integer in size.

	Mismatched brackets in variable

	Self-explanatory.

	Mismatched compute in variable formula

	A compute is referenced incorrectly or a compute that produces
per-atom values is used in an equal-style variable formula.

	Mismatched fix in variable formula

	A fix is referenced incorrectly or a fix that produces per-atom
values is used in an equal-style variable formula.

	Mismatched variable in variable formula

	A variable is referenced incorrectly or an atom-style variable that
produces per-atom values is used in an equal-style variable formula.

	Mixture %s fractions exceed 1.0

	The sum of fractions must not be > 1.0.

	Mixture ID must be alphanumeric or underscore characters

	Self-explanatory.

	Mixture group ID must be alphanumeric or underscore characters

	Self-explanatory.

	Mixture species is not defined

	One or more of the species ID is unknown.

	Modulo 0 in variable formula

	Self-explanatory.

	More than one positive area with a negative area

	SPARTA cannot determine which positive area the negative area is
inside of, if a cell is so large that it includes both positive and
negative areas.

	More than one positive volume with a negative volume

	SPARTA cannot determine which positive volume the negative volume is
inside of, if a cell is so large that it includes both positive and
negative volumes.

	Must use -in switch with multiple partitions

	A multi-partition simulation cannot read the input script from stdin.
The -in command-line option must be used to specify a file.

	Next command must list all universe and uloop variables

	This is to insure they stay in sync.

	No dump grid attributes specified

	Self-explanatory.

	No dump particle attributes specified

	Self-explanatory.

	No dump surf attributes specified

	Self-explanatory.

	No positive areas in cell

	This is an error when calculating how a 2d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	No positive volumes in cell

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Non digit character between brackets in variable

	Self-explantory.

	Number of groups in compute boundary mixture has changed

	This mixture property cannot be changed after this compute command is
issued.

	Number of groups in compute grid mixture has changed

	This mixture property cannot be changed after this compute command is
issued.

	Number of groups in compute sonine/grid mixture has changed

	This mixture property cannot be changed after this compute command is
issued.

	Number of groups in compute surf mixture has changed

	This mixture property cannot be changed after this compute command is
issued.

	Number of groups in compute tvib/grid mixture has changed

	This mixture property cannot be changed after this compute command is
issued.

	Number of species in compute tvib/grid mixture has changed

	This mixture property cannot be changed after this compute command is
issued.

	Numeric index is out of bounds

	A command with an argument that specifies an integer or range of
integers is using a value that is less than 1 or greater than the
maximum allowed limit.

	Nz value in read_grid file must be 1 for a 2d simulation

	Self-explanatory.

	Only ylo boundary can be axi-symmetric

	Self-explanatory. See the boundary doc page for more details.

	Owned cells with unknown neighbors = %d

	One or more grid cells have unknown neighbors which will prevent
particles from moving correctly. Please report the issue to the
SPARTA developers.

	Parent cell child missing

	Hierarchical grid traversal failed. Please report the issue to the
SPARTA developers.

	Particle %d on proc %d hit inside of surf %d on step %ld

	This error should not happen if particles start outside of physical
objects. Please report the issue to the SPARTA developers.

	Particle %d,%d on proc %d is in invalid cell on timestep %ld

	The particle is in a cell indexed by a value that is out-of-bounds
for the cells owned by this processor.

	Particle %d,%d on proc %d is in split cell on timestep %ld

	This should not happend. The particle should be in one of the
sub-cells of the split cell.

	Particle %d,%d on proc %d is outside cell on timestep %ld

	The particle’s coordinates are not within the grid cell it is
supposed to be in.

	Particle vector in equal-style variable formula

	Equal-style variables cannot use per-particle quantities.

	Particle-style variable in equal-style variable formula

	Equal-style variables cannot use per-particle quantities.

	Partition numeric index is out of bounds

	It must be an integer from 1 to the number of partitions.

	Per-particle compute in equal-style variable formula

	Equal-style variables cannot use per-particle quantities.

	Per-particle fix in equal-style variable formula

	Equal-style variables cannot use per-particle quantities.

	Per-processor particle count is too big

	No processor can have more particle than fit in a 32-bit integer,
approximately 2 billion.

	Point appears first in more than one CLINE

	This is an error when calculating how a 2d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Point appears last in more than one CLINE

	This is an error when calculating how a 2d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Power by 0 in variable formula

	Self-explanatory.

	Processor partitions are inconsistent

	The total number of processors in all partitions must match the
number of processors SPARTA is running on.

	React tce can only be used with collide vss

	Self-explanatory.

	Read_grid did not find parents section of grid file

	Expected Parents section but did not find keyword.

	Read_surf did not find lines section of surf file

	Expected Lines section but did not find keyword.

	Read_surf did not find points section of surf file

	Expected Parents section but did not find keyword.

	Read_surf did not find triangles section of surf file

	Expected Triangles section but did not find keyword.

	Region ID for dump custom does not exist

	Self-explanatory.

	Region intersect region ID does not exist

	One or more of the region IDs specified by the region intersect
command does not exist.

	Region union region ID does not exist

	One or more of the region IDs specified by the region union command
does not exist.

	Replacing a fix, but new style != old style

	A fix ID can be used a 2nd time, but only if the style matches the
previous fix. In this case it is assumed you with to reset a fix’s
parameters. This error may mean you are mistakenly re-using a fix ID
when you do not intend to.

	Request for unknown parameter from collide

	VSS model does not have the parameter being requested.

	Restart file byte ordering is not recognized

	The file does not appear to be a SPARTA restart file since it doesn’t
contain a recognized byte-ordering flag at the beginning.

	Restart file byte ordering is swapped

	The file was written on a machine with different byte-ordering than
the machine you are reading it on.

	Restart file incompatible with current version

	This is probably because you are trying to read a file created with a
version of SPARTA that is too old compared to the current version.

	Restart file is a multi-proc file

	The file is inconsistent with the filename specified for it.

	Restart file is not a multi-proc file

	The file is inconsistent with the filename specified for it.

	Restart variable returned a bad timestep

	The variable must return a timestep greater than the current
timestep.

	Reuse of compute ID

	A compute ID cannot be used twice.

	Reuse of dump ID

	A dump ID cannot be used twice.

	Reuse of region ID

	A region ID cannot be used twice.

	Reuse of surf_collide ID

	A surface collision model ID cannot be used more than once.

	Run command before grid ghost cells are defined

	Normally, ghost cells will be defined when the grid is created via
the create_grid or read_grid commands. However, if the global gridcut
cutoff is set to a value >= 0.0, then ghost cells can only be defined
if the partiioning of cells to processors is clumped, not dispersed.
See the fix balance command for an explanation. Invoking the fix
balance command with a clumped option will trigger ghost cells to be
defined.

	Run command before grid is defined

	Self-explanatory.

	Run command start value is after start of run

	Self-explanatory.

	Run command stop value is before end of run

	Self-explanatory.

	Seed command has not been used

	This command should appear near the beginning of your input script,
before any random numbers are needed by other commands.

	Sending particle to self

	This error should not occur. Please report the issue to the SPARTA
developers.

	Single area is negative, inverse donut

	An inverse donut is a surface with a flow region interior to the
donut hole and also exterior to the entire donut. This means the flow
regions are disconnected. SPARTA cannot correctly compute the flow
area of this kind of object.

	Single volume is negative, inverse donut

	An inverse donut is a surface with a flow region interior to the
donut hole and also exterior to the entire donut. This means the flow
regions are disconnected. SPARTA cannot correctly compute the flow
volume of this kind of object.

	Singlet BPG edge not on cell face

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Singlet CLINES point not on cell border

	This is an error when calculating how a 2d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Small,big integers are not sized correctly

	This error occurs whenthe sizes of smallint and bigint as defined in
src/spatype.h are not what is expected. Please report the issue to
the SPARTA developers.

	Smallint setting in spatype.h is invalid

	It has to be the size of an integer.

	Smallint setting in spatype.h is not compatible

	Smallint size stored in restart file is not consistent with SPARTA
version you are running.

	Species %s did not appear in VSS parameter file

	Self-explanatory.

	Species ID does not appear in species file

	Could not find the requested species in the specified file.

	Species ID is already defined

	Species IDs must be unique.

	Sqrt of negative value in variable formula

	Self-explanatory.

	Stats and fix not computed at compatible times

	Fixes generate values on specific timesteps. The stats output does
not match these timesteps.

	Stats compute array is accessed out-of-range

	Self-explanatory.

	Stats compute does not compute array

	Self-explanatory.

	Stats compute does not compute scalar

	Self-explanatory.

	Stats compute does not compute vector

	Self-explanatory.

	Stats compute vector is accessed out-of-range

	Self-explanatory.

	Stats every variable returned a bad timestep

	The variable must return a timestep greater than the current
timestep.

	Stats fix array is accessed out-of-range

	Self-explanatory.

	Stats fix does not compute array

	Self-explanatory.

	Stats fix does not compute scalar

	Self-explanatory.

	Stats fix does not compute vector

	Self-explanatory.

	Stats fix vector is accessed out-of-range

	Self-explanatory.

	Stats variable cannot be indexed

	A variable used as a stats keyword cannot be indexed. E.g. v_foo must
be used, not v_foo100.

	Stats variable is not equal-style variable

	Only equal-style variables can be output with stats output, not
particle-style or grid-style or surf-style variables.

	Stats_modify every variable returned a bad timestep

	The variable must return a timestep greater than the current
timestep.

	Stats_modify int format does not contain d character

	Self-explanatory.

	Substitution for illegal variable

	Input script line contained a variable that could not be substituted
for.

	Support for writing images in JPEG format not included

	SPARTA was not built with the -DSPARTA_JPEG switch in the Makefile.

	Support for writing images in PNG format not included

	SPARTA was not built with the -DSPARTA_PNG switch in the Makefile.

	Support for writing movies not included

	SPARTA was not built with the -DSPARTA_FFMPEG switch in the Makefile

	Surf file cannot contain lines for 3d simulation

	Self-explanatory.

	Surf file cannot contain triangles for 2d simulation

	Self-explanatory.

	Surf file does not contain lines

	Required for a 2d simulation.

	Surf file does not contain points

	Self-explanatory.

	Surf file does not contain triangles

	Required for a 3d simulation.

	Surf-style variables are not yet implemented

	Self-explanatory.

	Surf_collide ID must be alphanumeric or underscore characters

	Self-explanatory.

	Surf_collide diffuse rotation invalid for 2d

	Specified rotation vector must be in z-direction.

	Surf_collide diffuse variable is invalid style

	It must be an equal-style variable.

	Surf_collide diffuse variable name does not exist

	Self-explanatory.

	Surface check failed with %d duplicate edges

	One or more edges appeared in more than 2 triangles.

	Surface check failed with %d duplicate points

	One or more points appeared in more than 2 lines.

	Surface check failed with %d infinitely thin line pairs

	Two adjacent lines have normals in opposite directions indicating the
lines overlay each other.

	Surface check failed with %d infinitely thin triangle pairs

	Two adjacent triangles have normals in opposite directions indicating
the triangles overlay each other.

	Surface check failed with %d points on lines

	One or more points are on a line they are not an end point of, which
indicates an ill-formed surface.

	Surface check failed with %d points on triangles

	One or more points are on a triangle they are not an end point of,
which indicates an ill-formed surface.

	Surface check failed with %d unmatched edges

	One or more edges did not appear in a triangle, or appeared only once
and edge is not on surface of simulation box.

	Surface check failed with %d unmatched points

	One or more points did not appear in a line, or appeared only once
and point is not on surface of simulation box.

	Timestep must be >= 0

	Reset_timestep cannot be used to set a negative timestep.

	Too big a timestep

	Reset_timestep timestep value must fit in a SPARTA big integer, as
specified by the -DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG
options in the low-level Makefile used to build SPARTA.
See Section 2.2 of the manual for details.

	Too many surfs in one cell

	Use the global surfmax command to increase this max allowed number of
surfs per grid cell.

	Too many timesteps

	The cummulative timesteps must fit in a SPARTA big integer, as as
specified by the -DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG
options in the low-level Makefile used to build SPARTA.
See Section 2.2 of the manual for details.

	Too much buffered per-proc info for dump

	Number of dumped values per processor cannot exceed a small integer
(~2 billion values).

	Too much per-proc info for dump

	Number of local atoms times number of columns must fit in a 32-bit
integer for dump.

	Unbalanced quotes in input line

	No matching end double quote was found following a leading double
quote.

	Unexpected end of data file

	SPARTA hit the end of the data file while attempting to read a
section. Something is wrong with the format of the data file.

	Unexpected end of grid file

	Self-explantory.

	Unexpected end of surf file

	Self-explanatory.

	Units command after simulation box is defined

	The units command cannot be used after a read_data, read_restart, or
create_box command.

	Universe/uloop variable count < # of partitions

	A universe or uloop style variable must specify a number of values >=
to the number of processor partitions.

	Unknown command: %s

	The command is not known to SPARTA. Check the input script.

	Unknown outcome in reaction

	The specified type of the reaction is not encoded in the reaction
style.

	VSS parameters do not match current species

	Species cannot be added after VSS colision file is read.

	Variable ID in variable formula does not exist

	Self-explanatory.

	Variable evaluation before simulation box is defined

	Cannot evaluate a compute or fix or atom-based value in a variable
before the simulation has been setup.

	Variable for dump every is invalid style

	Only equal-style variables can be used.

	Variable for dump image center is invalid style

	Must be an equal-style variable.

	Variable for dump image persp is invalid style

	Must be an equal-style variable.

	Variable for dump image phi is invalid style

	Must be an equal-style variable.

	Variable for dump image theta is invalid style

	Must be an equal-style variable.

	Variable for dump image zoom is invalid style

	Must be an equal-style variable.

	Variable for restart is invalid style

	It must be an equal-style variable.

	Variable for stats every is invalid style

	It must be an equal-style variable.

	Variable formula compute array is accessed out-of-range

	Self-explanatory.

	Variable formula compute vector is accessed out-of-range

	Self-explanatory.

	Variable formula fix array is accessed out-of-range

	Self-explanatory.

	Variable formula fix vector is accessed out-of-range

	Self-explanatory.

	Variable has circular dependency

	A circular dependency is when variable “a” in used by variable “b”
and variable “b” is also used by varaible “a”. Circular dependencies
with longer chains of dependence are also not allowed.

	Variable name between brackets must be alphanumeric or underscore characters

	Self-explanatory.

	Variable name for compute reduce does not exist

	Self-explanatory.

	Variable name for dump every does not exist

	Self-explanatory.

	Variable name for dump image center does not exist

	Self-explanatory.

	Variable name for dump image persp does not exist

	Self-explanatory.

	Variable name for dump image phi does not exist

	Self-explanatory.

	Variable name for dump image theta does not exist

	Self-explanatory.

	Variable name for dump image zoom does not exist

	Self-explanatory.

	Variable name for fix ave/grid does not exist

	Self-explanatory.

	Variable name for fix ave/surf does not exist

	Self-explanatory.

	Variable name for fix ave/time does not exist

	Self-explanatory.

	Variable name for restart does not exist

	Self-explanatory.

	Variable name for stats every does not exist

	Self-explanatory.

	Variable name must be alphanumeric or underscore characters

	Self-explanatory.

	Variable stats keyword cannot be used between runs

	Stats keywords that refer to time (such as cpu, elapsed) do not make
sense in between runs.

	Vertex contains duplicate edge

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Vertex contains edge that doesn’t point to it

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Vertex contains invalid edge

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Vertex has less than 3 edges

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	Vertex pointers to last edge are invalid

	This is an error when calculating how a 3d grid is cut or split by
surface elements. It should not normally occur. Please report the
issue to the SPARTA developers.

	World variable count doesn’t match # of partitions

	A world-style variable must specify a number of values equal to the
number of processor partitions.

	Y cannot be periodic for axi-symmetric

	Self-explanatory. See the boundary doc page for more details.

	Z dimension must be periodic for 2d simulation

	Self-explanatory.

12.3.2. Warnings

	%d particles were in wrong cells on timestep %ld

	This is the total number of particles that are incorrectly matched to
their grid cell.

	Grid cell interior corner points marked as unknown = %d

	Corner points of grid cells interior to the simulation domain were
not all marked successfully as inside, outside, or overlapping with
surface elements. This should normally not happen, but does not
affect simulations.

	More than one compute ke/particle

	This may be inefficient since each such compute stores a vector of
length equal to the number of particles.

	Restart file used different # of processors

	The restart file was written out by a SPARTA simulation running on a
different number of processors. This means you will likely want to
re-balance the grid cells and particles across processors. This can
be done using the balance or fix balance commands.

	Surface check found %d nearly infinitely thin line pairs

	Two adjacent lines have normals in nearly opposite directions
indicating the lines nearly overlay each other.

	Surface check found %d nearly infinitely thin triangle pairs

	Two adjacent triangles have normals in nearly opposite directions
indicating the triangles nearly overlay each other.

	Surface check found %d points nearly on lines

	One or more points are nearly on a line they are not an end point of,
which indicates an ill-formed surface.

	Surface check found %d points nearly on triangles

	One or more points are nearly on a triangle they are not an end point
of, which indicates an ill-formed surface.

13. Future and history

This section lists features we are planning to add to SPARTA, features
of previous versions of SPARTA, and features of other parallel molecular
dynamics codes I’ve distributed.

	Coming attractions

	Past versions

13.1. Coming attractions

The developers wish list link [http://sparta.sandia.gov/future.html]” on the SPARTA web page
gives a list of features we are planning to add to SPARTA in the
future. Please contact the you are interested in contributing to the
those developments or would be a future user of that feature.

You can also send email to the developers [http://sparta.sandia.gov/authors.html] if you want to add your
wish to the list.

13.2. Past versions

Sandia’s predecessor to SPARTA is a DSMC code called ICARUS. It was
developed in the early 1990s by Tim Bartel and Steve Plimpton [http://www.sandia.gov/~sjplimp]. It was later modified and
extended by Michael Gallis.

ICARUS is a 2d code, written in Fortran, which models the flow
geometry around bodies with a collection of adjoining body-fitted grid
blocks. The geometry of the grid cells within in a single block is
represented with analytic equations, which allows for fast particle
tracking.

Some details about ICARUS, including simulation snapshots and papers,
are discussed on this page [http://www.sandia.gov/~sjplimp/dsmc.html]

Performance-wise ICARUS scaled quite well on several generations of
parallel machines, and is still used by Sandia researchers
today. ICARUS was export-controlled software, and so was not
distributed widely outside of Sandia.

SPARTA development began in late 2011. In contrast to ICARUS, it is a
3d code, written in C++, and uses a hierarchical Cartesian grid to
track particles. Surfaces are embedded in the grid, which cuts and
splits their flow volumes.

The Authors link [http://sparta.sandia.gov/history.html] on the
SPARTA web page gives a timeline of features added to the code since
its initial open-source release.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	adapt_grid

B

 	
 	balance_grid

 	
 	bound_modify

 	boundary

C

 	
 	clear

 	collide

 	collide_modify

 	compute

 	compute boundary

 	compute count

 	compute count/kk

 	compute distsurf/grid

 	compute distsurf/grid/kk

 	compute eflux/grid

 	compute eflux/grid/kk

 	compute fft/grid

 	compute grid

 	compute grid/kk

 	compute isurf/grid

 	compute ke/particle

 	compute ke/particle/kk

 	compute lambda/grid

 	compute lambda/grid/kk

 	compute pflux/grid

 	
 	compute pflux/grid/kk

 	compute property/grid

 	compute property/grid/kk

 	compute react/boundary

 	compute react/isurf/grid

 	compute react/surf

 	compute reduce

 	compute sonine/grid

 	compute sonine/grid/kk

 	compute surf

 	compute surf/kk

 	compute temp

 	compute temp/kk

 	compute thermal/grid

 	compute thermal/grid/kk

 	compute tvib/grid

 	create_box

 	create_grid

 	create_particles

 	create_particles/kk

D

 	
 	dimension

 	dump

 	
 	dump image

 	dump movie

 	dump_modify

E

 	
 	echo

F

 	
 	fix

 	fix ablate

 	fix adapt

 	fix adapt/kk

 	fix ambipolar

 	fix ave/grid

 	fix ave/grid/kk

 	fix ave/histo

 	fix ave/histo/kk

 	fix ave/histo/weight

 	fix ave/histo/weight/kk

 	fix ave/surf

 	
 	fix ave/time

 	fix balance

 	fix balance/kk

 	fix emit/face

 	fix emit/face/file

 	fix emit/face/kk

 	fix emit/surf

 	fix grid/check

 	fix grid/check/kk

 	fix move/surf

 	fix move/surf/kk

 	fix print

 	fix vibmode

G

 	
 	global

 	
 	group

I

 	
 	if

 	
 	include

J

 	
 	jump

L

 	
 	label

 	
 	log

M

 	
 	mixture

 	
 	move_surf

N

 	
 	next

P

 	
 	package

 	
 	partition

 	print

Q

 	
 	quit

R

 	
 	react

 	react_modify

 	read_grid

 	read_isurf

 	read_particles

 	read_restart

 	
 	read_surf

 	region

 	remove_surf

 	reset_timestep

 	restart

 	run

S

 	
 	scale_particles

 	seed

 	shell

 	species

 	stats

 	
 	stats_modify

 	stats_style

 	suffix

 	surf_collide

 	surf_modify

 	surf_react

T

 	
 	timestep

U

 	
 	uncompute

 	undump

 	
 	unfix

 	units

V

 	
 	variable

W

 	
 	write_grid

 	write_isurf

 	
 	write_restart

 	write_surf

KOKKOS package

Kokkos is a templated C++ library that provides abstractions to allow a
single implementation of an application kernel (e.g. a collision style)
to run efficiently on different kinds of hardware, such as GPUs, Intel
Xeon Phis, or many-core CPUs. Kokkos maps the C++ kernel onto different
backend languages such as CUDA, OpenMP, or Pthreads. The Kokkos library
also provides data abstractions to adjust (at compile time) the memory
layout of data structures like 2d and 3d arrays to optimize performance
on different hardware. For more information on Kokkos, see
Github [https://github.com/kokkos/kokkos]. Kokkos is part of
Trilinos [http://trilinos.sandia.gov/packages/kokkos]. The Kokkos
library was written primarily by Carter Edwards, Christian Trott, and
Dan Sunderland (all Sandia).

The SPARTA KOKKOS package contains versions of collide, fix, and compute
styles that use data structures and macros provided by the Kokkos
library, which is included with SPARTA in /lib/kokkos. The KOKKOS
package was developed primarily by Stan Moore (Sandia) with
contributions of various styles by others, including Dan Ibanez
(Sandia), Tim Fuller (Sandia), and Sam Mish (Sandia). For more
information on developing using Kokkos abstractions see the Kokkos
programmers’ guide at /lib/kokkos/doc/Kokkos_PG.pdf.

The KOKKOS package currently provides support for 3 modes of execution
(per MPI task). These are Serial (MPI-only for CPUs and Intel Phi),
OpenMP (threading for many-core CPUs and Intel Phi), and CUDA (for
NVIDIA GPUs). You choose the mode at build time to produce an executable
compatible with specific hardware.

Note

Kokkos support within SPARTA must be built with a C++14 compatible compiler. For a list of compilers that have been tested with the Kokkos library, see the Kokkos README [https://github.com/kokkos/kokkos/blob/master/README.md].

Building SPARTA with the KOKKOS package with Makefiles:

To build with the KOKKOS package, start with the provided Kokkos
Makefiles in /src/MAKE/. You may need to modify the KOKKOS_ARCH variable
in the Makefile to match your specific hardware. For example:

	for Sandy Bridge CPUs, set KOKKOS_ARCH=SNB

	for Broadwell CPUs, set KOKKOS_ARCH=BWD

	for K80 GPUs, set KOKKOS_ARCH=KEPLER37

	for P100 GPUs and Power8 CPUs, set KOKKOS_ARCH=PASCAL60,POWER8

Building SPARTA with the KOKKOS package with CMake:

To build with the KOKKOS package, start with the provided preset files
in /cmake/presets/. You may need to set -D Kokkos_ARCH_{TYPE}=ON
to match your specific hardware. For example:

	for Sandy Bridge CPUs, set -D Kokkos_ARCH_SNB=ON

	for Broadwell CPUs, set -D Kokkos_ARCH_BWD=ON

	for K80 GPUs, set -D Kokkos_ARCH_KEPLER37=ON

	for P100 GPUs and Power8 CPUs, set -D Kokkos_ARCH_PASCAL60=ON, -D Kokkos_ARCH_POWER8=ON

See the Advanced Kokkos Options: section below for a listing of all
Kokkos architecture options.

Compile for CPU-only (MPI only, no threading):

Use a C++14 compatible compiler and set Kokkos architecture variable as described above. Then do the following:

Using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_mpi_only

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_mpi_only.cmake
make

Compile for CPU-only (MPI plus OpenMP threading):

Note

To build with Kokkos support for OpenMP threading, your compiler must support the OpenMP interface. You should have one or more multi-core CPUs so that multiple threads can be launched by each MPI task running on a CPU.

Use a C++14 compatible compiler and set KOKKOS architecture variable as described above. Then do the following:

using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_omp

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_omp.cmake
make

Compile for Intel KNL Xeon Phi (Intel Compiler, OpenMPI):

Use a C++14 compatible compiler and do the following:

using Makefiles:
.. code-block:: make

cd sparta/src
make yes-kokkos
make kokkos_phi

using CMake:
.. code-block:: make

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_phi.cmake
make

Compile for CPUs and GPUs (with OpenMPI or MPICH):

Note

To build with Kokkos support for NVIDIA GPUs, NVIDIA CUDA software version 7.5 or later must be installed on your system.

Use a C++14 compatible compiler and set Kokkos architecture variable in
for both GPU and CPU as described
above. Then do the following:

using Makefiles:
.. code-block:: make

cd sparta/src
make yes-kokkos
make kokkos_cuda

using CMake:
.. code-block:: make

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_cuda.cmake
make

Running SPARTA with the KOKKOS package:

All Kokkos operations occur within the context of an individual MPI task
running on a single node of the machine. The total number of MPI tasks
used by SPARTA (one or multiple per compute node) is set in the usual
manner via the mpirun or mpiexec commands, and is independent of Kokkos.
The mpirun or mpiexec command sets the total number of MPI tasks used by
SPARTA (one or multiple per compute node) and the number of MPI tasks
used per node. E.g. the mpirun command in OpenMPI does this via its -np
and -npernode switches. Ditto for MPICH via -np and -ppn.

Running on a multi-core CPU:

Here is a quick overview of how to use the KOKKOS package for CPU
acceleration, assuming one or more 16-core nodes.

mpirun -np 16 spa_kokkos_mpi_only -k on -sf kk -in in.collide # 1 node, 16 MPI tasks/node, no multi-threading
mpirun -np 2 -ppn 1 spa_kokkos_omp -k on t 16 -sf kk -in in.collide # 2 nodes, 1 MPI task/node, 16 threads/task
mpirun -np 2 spa_kokkos_omp -k on t 8 -sf kk -in in.collide # 1 node, 2 MPI tasks/node, 8 threads/task
mpirun -np 32 -ppn 4 spa_kokkos_omp -k on t 4 -sf kk -in in.collide # 8 nodes, 4 MPI tasks/node, 4 threads/task

To run using the KOKKOS package, use the “-k on”, “-sf kk” and “-pk
kokkos” command-line switches in your
mpirun command. You must use the “-k on” command-line switch to enable the KOKKOS package. It
takes additional arguments for hardware settings appropriate to your
system. Those arguments are documented here. For OpenMP use:

-k on t Nt

The “t Nt” option specifies how many OpenMP threads per MPI task to use
with a node. The default is Nt = 1, which is MPI-only mode. Note that
the product of MPI tasks * OpenMP threads/task should not exceed the
physical number of cores (on a node), otherwise performance will suffer.
If hyperthreading is enabled, then the product of MPI tasks * OpenMP
threads/task should not exceed the physical number of cores * hardware
threads. The “-k on” switch also issues a “package kokkos” command (with
no additional arguments) which sets various KOKKOS options to default
values, as discussed on the package command doc page.

The “-sf kk” command-line switch will
automatically append the “/kk” suffix to styles that support it. In this
manner no modification to the input script is needed. Alternatively, one
can run with the KOKKOS package by editing the input script as described
below.

Note

When using a single OpenMP thread, the Kokkos Serial backend (i.e. Makefile.kokkos_mpi_only) will give better performance than the OpenMP backend (i.e. Makefile.kokkos_omp) because some of the overhead to make the code thread-safe is removed.

Note

The default for the package kokkos command is to use “threaded” communication. However, when running on CPUs, it will typically be faster to use “classic” non-threaded communication. Use the “-pk kokkos” command-line switch to change the default package kokkos options. See its doc page for details and default settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 16 spa_kokkos_mpi_only -k on -sf kk -pk kokkos comm classic -in in.collide # non-threaded comm

For OpenMP, the KOKKOS package uses data duplication (i.e.
thread-private arrays) by default to avoid thread-level write conflicts
in some compute styles. Data duplication is typically fastest for small
numbers of threads (i.e. 8 or less) but does increase memory footprint
and is not scalable to large numbers of threads. An alternative to data
duplication is to use thread-level atomics, which don’t require
duplication. When using the Kokkos Serial backend or the OpenMP backend
with a single thread, no duplication or atomics are used. For CUDA, the
KOKKOS package always uses atomics in these computes when necessary. The
use of atomics instead of duplication can be forced by compiling with
the “-DSPARTA_KOKKOS_USE_ATOMICS” compile switch.

Core and Thread Affinity:

When using multi-threading, it is important for performance to bind both
MPI tasks to physical cores, and threads to physical cores, so they do
not migrate during a simulation.

If you are not certain MPI tasks are being bound (check the defaults for
your MPI installation), binding can be forced with these flags:

OpenMPI 1.8: mpirun -np 2 -bind-to socket -map-by socket ./spa_openmpi ...
Mvapich2 2.0: mpiexec -np 2 -bind-to socket -map-by socket ./spa_mvapich ...

For binding threads with KOKKOS OpenMP, use thread affinity environment
variables to force binding. With OpenMP 3.1 (gcc 4.7 or later, intel 12
or later) setting the environment variable OMP_PROC_BIND=true should be
sufficient. In general, for best performance with OpenMP 4.0 or better
set OMP_PROC_BIND=spread and OMP_PLACES=threads. For binding threads
with the KOKKOS pthreads option, compile SPARTA the KOKKOS HWLOC=yes
option as described below.

Running on Knight’s Landing (KNL) Intel Xeon Phi:

Here is a quick overview of how to use the KOKKOS package for the Intel
Knight’s Landing (KNL) Xeon Phi:

KNL Intel Phi chips have 68 physical cores. Typically 1 to 4 cores are
reserved for the OS, and only 64 or 66 cores are used. Each core has 4
hyperthreads, so there are effectively N = 256 (4*64) or N = 264 (4*66)
cores to run on. The product of MPI tasks * OpenMP threads/task should
not exceed this limit, otherwise performance will suffer. Note that with
the KOKKOS package you do not need to specify how many KNLs there are
per node; each KNL is simply treated as running some number of MPI
tasks.

Examples of mpirun commands that follow these rules are shown below.

Intel KNL node with 64 cores (256 threads/node via 4x hardware threading):
mpirun -np 64 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 1 node, 64 MPI tasks/node, 4 threads/task
mpirun -np 66 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 1 node, 66 MPI tasks/node, 4 threads/task
mpirun -np 32 spa_kokkos_phi -k on t 8 -sf kk -in in.collide # 1 node, 32 MPI tasks/node, 8 threads/task
mpirun -np 512 -ppn 64 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 8 nodes, 64 MPI tasks/node, 4 threads/task

The -np setting of the mpirun command sets the number of MPI tasks/node.
The “-k on t Nt” command-line switch sets the number of threads/task as
Nt. The product of these two values should be N, i.e. 256 or 264.

Note

The default for the package kokkos command is to use “threaded” communication. However, when running on KNL, it will typically be faster to use “classic” non-threaded communication. Use the “-pk kokkos” command-line switch to change the default package kokkos options. See its doc page for details and default settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 64 spa_kokkos_phi -k on t 4 -sf kk -pk kokkos comm classic -in in.collide # non-threaded comm

Note

MPI tasks and threads should be bound to cores as described above for CPUs.

Note

To build with Kokkos support for Intel Xeon Phi coprocessors such as Knight’s Corner (KNC), your system must be configured to use them in “native” mode, not “offload” mode.

Running on GPUs:

Use the “-k” command-line switch to
specify the number of GPUs per node, and the number of threads per MPI
task. Typically the -np setting of the mpirun command should set the
number of MPI tasks/node to be equal to the # of physical GPUs on the
node. You can assign multiple MPI tasks to the same GPU with the KOKKOS
package, but this is usually only faster if significant portions of the
input script have not been ported to use Kokkos. Using CUDA MPS is
recommended in this scenario. As above for multi-core CPUs (and no GPU),
if N is the number of physical cores/node, then the number of MPI
tasks/node should not exceed N.

-k on g Ng

Here are examples of how to use the KOKKOS package for GPUs, assuming
one or more nodes, each with two GPUs.

mpirun -np 2 spa_kokkos_cuda -k on g 2 -sf kk -in in.collide # 1 node, 2 MPI tasks/node, 2 GPUs/node
mpirun -np 32 -ppn 2 spa_kokkos_cuda -k on g 2 -sf kk -in in.collide # 16 nodes, 2 MPI tasks/node, 2 GPUs/node (32 GPUs total)

Note

The default for the package kokkos command is to use “parallel” reduction of statistics along with threaded communication. However, using “atomic” reduction is typically faster for GPUs. Use the “-pk kokkos” command-line switch to change the default package kokkos options.
See its doc page for details and default settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 2 spa_kokkos_cuda -k on g 2 -sf kk -pk kokkos reduction atomic -in in.collide # set reduction = atomic

Note

Using OpenMP threading and CUDA together is currently not possible with the SPARTA KOKKOS package.

Note

For good performance of the KOKKOS package on GPUs, you must have Kepler generation GPUs (or later). The Kokkos library exploits texture cache options not supported by Telsa generation GPUs (or older).

Note

When using a GPU, you will achieve the best performance if your input script does not use fix or compute styles which are not yet Kokkos-enabled. This allows data to stay on the GPU for multiple timesteps, without being copied back to the host CPU.
Invoking a non-Kokkos fix or compute, or performing I/O for stat or dump output will cause data to be copied back to the CPU incurring a performance penalty.

Run with the KOKKOS package by editing an input script:

Alternatively the effect of the “-sf” or “-pk” switches can be
duplicated by adding the package kokkos or suffix kk commands to your input script.

The discussion above for building SPARTA with the KOKKOS package, the
mpirun/mpiexec command, and setting appropriate thread are the same.

You must still use the “-k on” command-line switch to enable the KOKKOS package, and
specify its additional arguments for hardware options appropriate to
your system, as documented above.

You can use the suffix kk command, or you can
explicitly add a “kk” suffix to individual styles in your input script,
e.g.

collide vss/kk air ar.vss

You only need to use the package kokkos command if
you wish to change any of its option defaults, as set by the “-k on”
command-line switch.

Speed-ups to expect:

The performance of KOKKOS running in different modes is a function of
your hardware, which KOKKOS-enable styles are used, and the problem
size.

Generally speaking, when running on CPUs only, with a single thread per MPI task, the
performance difference of a KOKKOS style and (un-accelerated) styles
(MPI-only mode)is typically small (less than 20%).

See the Benchmark page [http://sparta.sandia.gov/bench.html] of the
SPARTA web site for performance of the KOKKOS package on different
hardware.

Advanced Kokkos options:

There are other allowed options when building with the KOKKOS package.
A few options are listed here; for a full list of all options,
please refer to the Kokkos documentation.
As above, these options can be set as variables on the command line,
in a Makefile, or in a CMake presets file. For default CMake values,
see cmake -LH | grep -i kokkos.

The CMake option Kokkos_ENABLE_{OPTION} or the makefile setting KOKKOS_DEVICE={OPTION} sets the
parallelization method used for Kokkos code (within SPARTA).
For example, the CMake option Kokkos_ENABLE_SERIAL=ON or the makefile setting KOKKOS_DEVICES=SERIAL
means that no threading will be used. The CMake option Kokkos_ENABLE_OPENMP=ON or the
makefile setting KOKKOS_DEVICES=OPENMP means that OpenMP threading will be
used. The CMake option Kokkos_ENABLE_CUDA=ON or the makefile setting
KOKKOS_DEVICES=CUDA means an NVIDIA GPU running CUDA will be used.

As described above, the CMake option Kokkos_ARCH_{TYPE}=ON or the makefile setting KOKKOS_ARCH={TYPE} enables compiler switches needed when compiling for a specific hardware:

As above, they can be set either as variables on the make command line
or in Makefile.machine. This is the full list of options, including
those discussed above. Each takes a value shown below. The default value
is listed, which is set in the /lib/kokkos/Makefile.kokkos file.

	Arch-ID

	HOST or GPU

	Description

	AMDAVX

	HOST

	AMD 64-bit x86 CPU (AVX 1)

	EPYC

	HOST

	AMD EPYC Zen class CPU (AVX 2)

	ARMV80

	HOST

	ARMv8.0 Compatible CPU

	ARMV81

	HOST

	ARMv8.1 Compatible CPU

	ARMV8THUNDERX

	HOST

	ARMv8 Cavium ThunderX CPU

	ARMV8THUNDERX2

	HOST

	ARMv8 Cavium ThunderX2 CPU

	WSM

	HOST

	Intel Westmere CPU (SSE 4.2)

	SNB

	HOST

	Intel Sandy/Ivy Bridge CPU (AVX 1)

	HSW

	HOST

	Intel Haswell CPU (AVX 2)

	BDW

	HOST

	Intel Broadwell Xeon E-class CPU (AVX 2 + transactional mem)

	SKX

	HOST

	Intel Sky Lake Xeon E-class HPC CPU (AVX512 + transactional mem)

	KNC

	HOST

	Intel Knights Corner Xeon Phi

	KNL

	HOST

	Intel Knights Landing Xeon Phi

	BGQ

	HOST

	IBM Blue Gene/Q CPU

	POWER7

	HOST

	IBM POWER7 CPU

	POWER8

	HOST

	IBM POWER8 CPU

	POWER9

	HOST

	IBM POWER9 CPU

	KEPLER30

	GPU

	NVIDIA Kepler generation CC 3.0 GPU

	KEPLER32

	GPU

	NVIDIA Kepler generation CC 3.2 GPU

	KEPLER35

	GPU

	NVIDIA Kepler generation CC 3.5 GPU

	KEPLER37

	GPU

	NVIDIA Kepler generation CC 3.7 GPU

	MAXWELL50

	GPU

	NVIDIA Maxwell generation CC 5.0 GPU

	MAXWELL52

	GPU

	NVIDIA Maxwell generation CC 5.2 GPU

	MAXWELL53

	GPU

	NVIDIA Maxwell generation CC 5.3 GPU

	PASCAL60

	GPU

	NVIDIA Pascal generation CC 6.0 GPU

	PASCAL61

	GPU

	NVIDIA Pascal generation CC 6.1 GPU

	VOLTA70

	GPU

	NVIDIA Volta generation CC 7.0 GPU

	VOLTA72

	GPU

	NVIDIA Volta generation CC 7.2 GPU

	TURING75

	GPU

	NVIDIA Turing generation CC 7.5 GPU

	AMPERE80

	GPU

	NVIDIA Ampere generation CC 8.0 GPU

	VEGA900

	GPU

	AMD GPU MI25 GFX900

	VEGA906

	GPU

	AMD GPU MI50/MI60 GFX906

	INTEL_GEN

	GPU

	Intel GPUs Gen9+

The CMake option Kokkos_ENABLE_CUDA_{OPTION} or the makefile setting KOKKOS_CUDA_OPTIONS=*OPTION* are
additional options for CUDA. For example, the CMake option Kokkos_ENABLE_CUDA_UVM=ON or the makefile setting KOKKOS_CUDA_OPTIONS=”enable_lambda,force_uvm” enables the use of CUDA “Unified Virtual Memory” (UVM) in Kokkos. UVM allows to one to use the host CPU memory to supplement the memory used on the GPU (with some performance penalty) and thus enables running larger problems that would otherwise not fit into the RAM on the GPU. Please note, that the SPARTA KOKKOS package must always be compiled with the CMake option Kokkos_ENABLE_CUDA_LAMBDA=ON or the makefile setting KOKKOS_CUDA_OPTIONS=enable_lambda when using GPUs. The CMake configuration will thus always enable it.

The CMake option Kokkos_ENABLE_DEBUG=ON or the makefile setting KOKKOS_DEBUG=yes is useful
when developing a Kokkos-enabled style within SPARTA. This option enables printing of run-time debugging
information that can be useful and also enables runtime bounds
checking on Kokkos data structures, but may slow down performance.

Restrictions:

Currently, there are no precision options with the KOKKOS package. All
compilation and computation is performed in double precision.

adapt_grid command

Syntax:

adapt_grid group-ID action1 action2 style args ... keyword args ...

	group-ID = group ID for which grid cell adaptation will be attempted

	action1 = refine or coarsen

	action2 = coarsen or refine, optional

	style = particle or surf or value or random

	particle args = rthresh cthresh

	rcount = threshold in particle count for refinment

	ccount = threshold in particle count for coarsening

	surf arg = surfID ssize

	surfID = group ID for which surface elements to consider

	ssize = do not refine to create cells smaller than ssize (dist units)
coarsen only if child cells are smaller than ssize (dist units)

	value args = c_ID/c_ID[N]/f_ID/f_ID[N] rthresh cthresh

	c_ID = ID of a compute that calculates a per grid vector, use values from vector

	c_ID[N] = ID of a compute that calculates a per grid array, use values from Nth column of array

	f_ID = ID of a fix that calculates a per grid vector, use vector

	f_ID[N] = ID of a fix that calculates a per grid array, use Nth column of array

	rvalue = threshold in value for refinement

	cvalue = threshold in value for coarsening

	random args = rfrac cfrac

	rfrac = fraction of child cells to refine

	cfrac = fraction of parent cells to coarsen

	zero or more keyword/args pairs may be appended

keyword = iterate or maxlevel or minlevel or thresh or combine or cells or region or dir

	iterate arg = niterate

	niterate = number of iterations of action loop

	maxlevel arg = Nmax

	Nmax = do not refine to create child cells at a level > Nmax

	minlevel arg = Nmin

	Nmin = do not coarsen to create child cells at a level < Nmin

	thresh args = rdecide cdecide

	rdecide = less or more = refine when value is less or more than rvalue

	cdecide = less or more = coarsen when value is less or more than cvalue

	combine arg = sum or min or max = how to combine child values into parent value

	cells args = Nx Ny Nz

	Nx,Ny,Nz = refine a cell into Nx by Ny by Nz child cells

	region args = regID rflag

	regID = ID of region that cells must be inside to be eligible for adaptation

	rflag = all or one or center = what portion of grid cell must be inside

	dir args = Sx Sy Sz

	Sx,Sy,Sz = vector components used with style surf to test surf elements

	file arg = filename

	filename = name of file to write out with new parent grid info

Examples:

adapt_grid all refine particle 10 50
adapt_grid all coarsen particle 10 50
adapt_grid all refine coarsen particle 10 50
adapt_grid all refine surf all 0.15 iterate 1 dir 1 0 0
adapt_grid all refine coarsen value c_11 5.0 10.0 iterate 2

Description:

This command perform a one-time adaptation of grid cells within a grid
cell group, either by refinement or coarsening or both. This command can
be invoked as many times as desired, before or between simulation runs.
Grid adaptation can also be performed on-the-fly during a simulation by
using the fix adapt command.

Refinement means splitting one child cell into multiple new child cells.
The original child cell disappears, conceptually it becomes a parent cell. Coarsening means
combining all the child cells of a parent cell, so that the child cells
are deleted and the parent cell becomes a single new child cell. See
Section howto 4.8 for a description of
the hierarchical grid used by SPARTA and definitions of child and parent
cells.

Grid adaptation can be useful for adjusting the grid cell sizes to the
current density distribution, or mean-free-path of particles, or to
other simulation attributes such as the presence of surface elements. A
well-adapted grid can improve accuracy of the simulation and/or reduce a
simulation’s computational cost.

Only grid cells in the grid group specified by group-ID are eligible
for refinement. A parent grid cell is only eligible for coarsening if
all its child cells are in the specified grid group. See the group grid command for info on how grid cells can be assigned
to grid groups. Note that the grid group assignment is transferred to
new refined or coarsened cells, so that new cells remain eligible for
adaptation if the adapt_grid command is invoked again or successive
adaptations are performed via the fix adapt
command.

The action1 and action2 parameters determine whether refinement or
coarsening is performed and in what order. Action2 is optional. If not
specified, only action1 is performed. Note that cells which are
refined by action1 are not eligible for subsequent coarsening by
action2, during a single invocation of this command. Likewise cells
that are coarsened by action1 are not eligible for subsequent
refinement by action2. This is also true if the iterate keyword is
used to loop over the two actions multiple times. Cells can be
successivly refined on each iteration, but will never be coarsened.
Likewise cells can be successivly coarsensed, but will never be refined.
Of course any cell may be refined or coarsened later if the adapt_grid
command is used again, including on later timesteps via the fix adapt command.

Examples of 2d and 3d refined grids are shown here. The 3d simulation
shows 2d planar cuts through the 3d grid. Click on either image for a
larger version.

[image: image0][image: image1]

The first step in a refinement action is to determine what child cells
are eligible for refinement. Child cells that are wholly inside a closed
surface are not eligible. The maxlevel and region keywords also
affect eligibility. They are described below.

The first step in a coarsening action is to determine what parent cells
are eligible for coarsening. Only parent cells whose children are all
child cells are eligible. If one or more of their children are also
parent cells, then the parent cell is a “grandparent” and is not
eligible for coarsening. The minlevel and region keywords also
affect eligibility. They are described below.

The style parameter is then used to decide whether to refine or
coarsen each eligible grid cell. The operation of the different styles is
described in the next section. Note that for refinement, the number of
new child cells created withing a single cell is set by the cells
keyword which defaults to 2x2x2 for 3d models and 2x2x1 for 2d models.

Note that many of the style take an argument for both refinement and
coarsening, e.g. rcount and ccount for style particle. Both
arguments must be specified, though one or the other will be ignored if
the specified actions do not include refinement or coarsening.

	The particle style

	adapts based on the number of particles in a grid cell. For
refinement, if the current number (on this timestep) is more than
rcount, the cell is refined. For coarsening, if the sum of the
current number of particles in all child cells of the parent cell is
less than ccount, the parent cell is coarsened. Note that if you
wish to use time-averaged counts of particles in each cell you
should use the value style with the ID of a fix
ave/grid command that time-averages particle
counts from the compute grid command.

	The surf style

	adapts only if a grid cell contains one or more surface elements in
the specified surfID group. The dir keyword can be used to
exclude additional surface elements. For refinement, the cell is
refined unless the refinement will create child cells with any of
their dimensions smaller than the specified ssize. For coarsening,
the parent cell is coarsened only if any of the child cell
dimensions is smaller than the specified ssize.

	The value style

	uses values calculated by a compute or
fix to decide whether to adapt each cell. The fix
or compute must calculate per-grid values as described in
Section howto 4.4. If the compute or fix
calculates a vector of such values, it is specified as c_ID or
f_ID. If it calculates an array of such values, it is specified as
c_ID[N] or f_ID[N] when N is the column of values to use, from 1 to
Ncolumns.

For refinement, if the compute or fix value for the grid cell is “more”
than rvalue, the cell is refined. For coarsening, if the “sum” of the
compute or fix values in all child cells of the parent cell is “less”
than cvalue, the parent cell is coarsened. The thresh keyword can be
used to change the refinment or coarsening criteria to “less” versus
“more”. Likewise the combine keyword can be used to change the “sum”
of child cell values to be a “min” or “max” operation.

Here is an example using particle count as calculated by the compute grid command as an adaptation criterion. A cell
will be refined if its count > 25, and a parent cell coarsened if the
sum of its children cell counts < 10.

compute 1 grid all n nrho
adapt_grid refine coarsen value c_11 25 10

The same thing could be accomplished with this command:

adapt_grid refine coarsen particle 25 10

These commands use a time-averaged particle count as an adaptation
criterion in the same manner:

compute 1 grid all n nrho
fix 1 ave/grid 10 100 1000 c_11
run 1000 # run to accumulate time averages
adapt_grid refine coarsen value f_11 25 10

Here is an example using mean-free path (MFP) as calculated by the
compute lambda/grid command as an
adaptation criterion. Note the use of “thresh less more” to refine when
MFP is less than the specified threshold (0.05).

compute 1 lambda/grid c_12 NULL N2 kall
adapt_grid refine coarsen value c_12 0.05 0.1 &
 combine min thresh less more

	The random style

	is provided for test and debugging purposes. For each cell eligible
for adaptation, a uniform random number RN bewteen 0.0 and 1.0 is
generated. For refinement, the cell is refined if RN < rfrac, so
that approximately an rfrac fraction of the child cells are
refined. Similarly, for coarsening, the parent cell is coarsened if RN
< cfrac, so that approximately a cfrac fraction of the parent
cells are coarsened.

Various optional keywords can also be specified.

	The iterate keyword

	determines how many times the action1 and action2 operations are
looped over. The default is once. If multiple iterations are used,
cells can be recursively refined or coarsened. If no further
refinement or coarsening occurs on an iteration, the loop ends. Note
that the compute used with style value will be recalculated at each
iteration to accurately reflect per grid values for the current grid.

	The maxlevel keyword

	limits how far a grid cell can be refined. See Section howto
4.8 for a definition of the level assigned to each
parent and child cell. Child cells with a level >= Nmax are not
eligible for refinement. The default setting of Nmax = 0 means there
is no limit on refinement.

	The minlevel keyword

	limits how far a grid cell can be coarsened. See Section howto
4.8 for a definition of the level assigned to each
parent and child cell. Parent cells with a level < Nmin are not
eligible for coarsening. The default setting of Nmin = 1 means the
only limit on coarsening is that the first level grid is preserved
(never coarsened to a single root cell). The specified Nmin must be
>= 1.

	The thresh keyword

	is only used by style value. It sets the comparison criterion for
refinement as rdecide = less or more. This means a child cell
is refined if its compute or fix value is less or more than
rvalue. Similarly, it sets the comparison criterion for coarsening
as cdecide = less or more. This means a parent cell is coarsened
if the compute or fix value accumulated from the compute or fix values
of its children is less or more than cvalue.

	The combine keyword

	is only used by style value. It determines how the compute or fix
value for a parent cell is accumulated from the compute or fix values
of all its children. If the setting is sum, the child values are
summed. If it is min or max, the parent value is the minimum or
maximum of all the child values.

	The cells keyword

	determines how many new child cells are created
when a single grid cell is refined. Nx by Ny by Nz new child cells
are created. Nz must be one for 2d. Any of Nx, Ny, Nz may have a
value of 1, but they cannot all be 1.

	The region keyword

	can be used to limit which grid cells are eligible for adapation. It
applies to both child cells for refinment and parent cells for
coarsening. The ID of the geometric region is speficied as
regID. See the region command for details on
what kind of geometric regions can be defined. Note that the side
option for the region command can be used to
define whether the inside or outside of the geometric region is
considered to be “in” the region.

	The grid cell

	must be in the region to be eligible for adaptation. The rflag
setting determines how a grid cell is judged to be in the region or
not. For rflag = one, it is in the region if any of its corner
points (4 for 2d, 8 for 3d) is in the region. For rflag = all, all
its corner points must be in the region. For rflag = center, the
center point of the grid cell must be in the region.

	The dir keyword

	is only used by the style surf. The Sx,Sy,Sz settings are components
of a vector. It’s length does not matter, just its direction. Only
surface elements whose normal is opposed to the vector direction (in a
dot product sense) are eligible surfaces for the adapation procedure
described above for the surf style. This can be useful to exclude
refinement around surface elements that are not facing “upwind” with
respect to the flow direction of the particles. This is accomplished
by setting Sx,Sy,Sz to the flow direction. If Sy,Sy,Sz = (0,0,0),
which is the default, then no surface elements are excluded.

	The file keyword

	triggers output of the adapted grid to the specified filename. The
format of the file is the same as that created by the
write_grid command, which is a list of
parent cells. The file can be read in by a subsequent simulation to
define a grid, or used by visualization or other post-procesing
tools. Note that no file is written if no grid cells are refined or
coarsened.

If the filename contains a “*” wildcard character, then the “*” is
replaced by the current timestep. This is useful for the fix
adapt command, if you wish to write out multiple
grid files, each time the grid iadapts.

If the grid is partitioned across processors in a “clumped” manner
before this command is invoked, it will still be clumped by processor
after the adaptation. Likewise if it is not clumped before, it will
remain un-clumped after adaptation. You can use the
balance_grid command after this command to
re-balance the new adapted grid cells and their particles across
processors. See Section howto 4.8 for a
description clumped and unclumped grids.

Restrictions:

This command can only be used after the grid has been created by the
create_grid, read_grid, or
read_restart commands.

Currently a fix cannot be used with style value for iterate > 1.
This is because the per-grid cell values accumulated by the fix are not
interpolated to new grid cells so that the fix can be re-evaluated
multiple times. In the future we may revove this restriction.

Related commands:

fix adapt command,
balance_grid command

Default:

The keyword defaults are iterate = 1, minlevel = 1, maxlevel = 0, thresh
= more for rdecide and less for cdecide, combine = sum, cells = 2 2 2
for 3d and 2 2 1 for 2d, no region, dir = 0 0 0, and no file.

balance_grid command

Syntax:

balance_grid style args ...

	style = none or stride or clump or block or random or
proc or rcb

	none args = none

	stride args = xyz or xzy or yxz or yzx or zxy or zyx

	clump args = xyz or xzy or yxz or yzx or zxy or zyx

	block args = Px Py Pz: # of processors in each dimension

	random args = none

	proc args = none

	rcb args = weight or part or time

	zero or more keyword/value(s) pairs may be appended

keyword = axes or flip

	axes value = dims: string with any of “x”, “y”, or “z” characters in it

	flip value = yes or no

Examples:

balance_grid block * * *
balance_grid block * 4 *
balance_grid clump yxz
balance_grid random
balance_grid rcb part
balance_grid rcb part axes xz

Description:

This command adjusts the assignment of grid cells and their particles to
processors, to attempt to balance the computational cost (load) evenly
across processors. The load balancing is “static” in the sense that this
command performs the balancing once, before or between simulations. The
assignments will remain static during the subsequent run. To perform
“dynamic” balancing, see the fix balance command,
which can adjust the assignemt of grid cells to processors on-the-fly
during a run.

After grid cells have been assigned, they are migrated to new owning
processors, along with any particles they own or other per-cell
attributes stored by fixes. The internal data structures within SPARTA
for grid cells and particles are re-initialized with the new
decomposition.

This command can be used immediately after the grid is created, via the
create_grid or
read_restart commands. In the former case
balance_grid can be used to partition the grid in a more desirable
manner than the default creation options allow for. In the latter case,
balance grid can be used to change the somewhat random assignment of
grid cells to processors that will be made if the restart file is read
by a different number of processors than it was written by.

This command can also be used once particles have been created, or a
simulation has come to equilibrium with a spatially varying density
distribution of particles, so that the computational load is more evenly
balanced across processors.

The details of how child cells are assigned to processors by the various
options of this command are described below. The cells assigned to each
processor will either be “clumped” or “dispersed”.

The clump and block and rcb styles will produce clumped
assignments of child cells to each processor. This means each
processor’s cells will be geometrically compact. The stride and
random and proc styles will produce dispersed assignments of child
cells to each processor.

Important

See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell assignments and their relative performance trade-offs.

	The none style

	will not change the assignment of grid cells to processors. However it will update the internal data structures within SPARTA that store ghost cell information on each processor for cells owned by other processors. This is useful if the global gridcut command was used after grid cells were already defined. That command erases ghost cell information stored by processors, which then needs to be re-generated before a simulation is run. Using the balance_grid none command will re-generate the ghost cell information.

	The stride, clump, and block styles

	can only be used if the grid is “uniform”. The grid in SPARTA is hierarchical with one or more levels, as defined by the create_grid or read_grid commlands. If the parent cell of every grid cell is at the same level of the hierarchy, then for purposes of this command the grid is uniform, meaning the collection of grid cells effectively form a uniform fine grid overlaying the entire simulation domain.

The meaning of the stride, clump, and block styles is exactly the same as when they are used as keywords with the create_grid command. See its doc page for details.

	The random style

	means that each grid cell will be assigned randomly to one of the processors. Note that in this case every processor will typically not be assigned the exact same number of cells.

	The proc style

	means that each processor will choose a random processor to assign its first grid cell to. It will then loop over its grid cells and assign each to consecutive processors, wrapping around the enumeration of processors if necessary. Note that in this case every processor will typically not be assigned exactly the same number of cells.

	The rcb style

	uses a recursive coordinate bisectioning (RCB) algorithm to assign spatially-compact clumps of grid cells to processors. Each grid cell has a “weight” in this algorithm so that each processor is assigned an equal total weight of grid cells, as nearly as possible.

	If the weight argument is specified as cell, then the weight for each grid cell is 1.0, so that each processor will end up with an equal number of grid cells.

	If the weight argument is specified as part, then the weight for each grid cell is the number of particles it currently owns, so that each processor will end up with an equal number of particles.

	If the weight argument is specified as time, then timers are used to estimate the cost of each grid cell. The cost from the timers is given on a per processor basis, and then assigned to grid cells by weighting by the relative number of particles in the grid cells. If no timing data has yet been collected at the point in a script where this command is issued, a cell style weight will be used instead of time. A small warmup run (for example 100 timesteps) can be used before the balance command so that timer data is available. The timers used for balancing tally time from the move, sort, collide, and modify portions of each timestep.

Here is an example of an RCB partitioning for 24 processors, of a 2d hierarchical grid with 5 levels, refined around a tilted ellipsoidal surface object (outlined in pink). This is for a weight cell setting, yielding an equal number of grid cells per processor. Each processor is assigned a different color of grid cells. (Note that less colors than processors were used, so the disjoint yellow cells actually belong to three different processors). This is an example of a clumped distribution where each processor’s assigned cells can be compactly bounded by a rectangle. Click for a larger version of the image.

[image: image0]

The optional keywords axes and flip only apply to the rcb style.
Otherwise they are ignored.

The axes keyword allows limiting the partitioning created by the RCB
algorithm to a subset of dimensions. The default is to allow cuts in all
dimension, e.g. x,y,z for 3d simulations. The dims value is a string
with 1, 2, or 3 characters. The characters must be one of “x”, “y”, or
“z”. They can be in any order and must be unique. For example, in 3d, a
dims = xz would only partition the 3d grid only in the x and z
dimensions.

The flip keyword is useful for debugging. If it is set to yes then
each time an RCB partitioning is done, the coordinates of grid cells
will (internally only) undergo a sign flip to insure that the new owner
of each grid cell is a different processor than the previous owner, at
least when more than a few processors are used. This will insure all
particle and grid data moves to new processors, fully exercising the
rebalancing code.

Restrictions:

This command can only be used after the grid has been created by the
create_grid, read_grid, or
read_restart <command-read-restart> commands.

This command also initializes various options in SPARTA before
performing the balancing. This is so that grid cells are ready to
migrate to new processors. Thus if an error is flagged, e.g. that a
simulation box boundary condition is not yet assigned, that operation
needs to be performed in the input script before balancing can be
performed.

Related commands:

fix balance command

Default:

The default settings for the optional keywords are axes = xyz, flip =
no.

bound_modify command

Syntax:

bound_modify wall1 wall2 ... keyword value ...

	wall1,wall2,… = xlo or xhi or ylo or yhi or zlo or zhi

	one or more keyword/value pairs may be listed

keywords = collide or react

	collide value = sc-ID: ID of a surface collision model

	react value = sr-ID: ID of a surface reaction model or none

Examples:

bound_modify yhi collide 1 react 2
bound_modify zlo zhi collide hotwall

Description:

Set parameters for one or more of the boundaries of the global
simulation box. Any of the 6 faces can be selected via the list of
wall settings.

The collide keyword can only be used when the boundary is of type “s”,
for surface, as set by the boundary command. This
keyword assigns a surface collision model to the boundary, as defined by
the surf_collide command. The ID of the surface
collision model is specified as sc-ID, which is the ID used in the
surf_collide command.

The effect of this keyword is that particle collisions with the
specified boundaries will be computed by the specified surface collision
model.

The react keyword can only be used when the boundary is of type “s”,
for surface, as set by the boundary command. This
keyword assigns a surface reaction model to the boundary, as defined by
the surf_react command. The ID of the surface
reaction model is specified as sr-ID, which is the ID used in the
surf_react command. If an sr-ID of none is used
then surface reactions are turned off.

The effect of this keyword is that particle collisions with the
specified boundaries will induce reactions which are computed by the
specified surface reaction model.

Restrictions:

For 2d simulations, the zlo and zhi boundaries cannot be modified by
this command, since they are always periodic.

All boundaries of type “s” must be assigned to a surface collision model
via the collide keyword before a simlulation can be performed. Using a
surface reaction model is optional.

Related commands:

boundary command
surf_modify command

Default:

The default for boundary reactions is none.

boundary command

Syntax:

boundary x y z

	x,y,z = o or p or r or a or s, one or two letters

o is outflow
p is periodic
r is specular reflection
a is axi-symmetric
s is treat boundary as a surface

Examples:

boundary o p p
boundary os o o
boundary r p rs

Description:

Set the style of boundaries for the global simulation box in each of the
x, y, z dimensions. A single letter assigns the same style to both the
lower and upper face of the box in that dimension. Two letters assigns
the first style to the lower face and the second style to the upper
face. The size of the simulation box is set by the
create_box command.

The boundary style determines how particles exiting the box are handled.

Style o means an outflow boundary, so that particles freely exit the
simulation.

Style p means the box is periodic, so that particles exit one end of
the box and re-enter the other end. The p style must be applied to
both faces of a dimension.

Style r means a specularly reflecting boundary. Particles that cross
this boundary have their velocity reversed so as to re-enter the box.
The new velocity is used to advect the particle for the reminder of the
timestep following the collision.

Style a means an axi-symmetric boundary, which can only be used for
the lower y-dimension boundary in a 2d simulation. The simulation box
must also have a value of 0.0 for ylo; see the
create_box command. This effectively means that
the x-axis is the axis of symmetry. The upper y-dimension boundary
cannot be periodic.

Style s means the boundary is treated as a surface which allows the
particle-surface interaction to be treated in a variety of ways via the
options provided by the surf_collide command.
This is effectively the same as when a particle collides with a
triangulated surface read in and setup by the
read_surf command.

For style s, the boundary face must also be assigned to a surface
collision model defined by the surf_collide
command. The assignment of the boundary to the model is done via the
bound_modify command.

Restrictions:

This command must be used before the grid is defined, e.g. by a
create_grid command.

For 2d simulations, the z dimension must be periodic.

Related commands:

bound_modify command
surf_collide command

Default:

boundary p p p

clear command

Syntax:

clear

Examples:

.. commands for 1st simulation
clear
.. commands for 2nd simulation

Description:

This command deletes all atoms, restores all settings to their default
values, and frees all memory allocated by SPARTA. Once a clear command
has been executed, it is almost as if SPARTA were starting over, with
only the exceptions noted below. This command enables multiple jobs to
be run sequentially from one input script.

These settings are not affected by a clear command: the working
directory (shell command), log file status
(log command), echo status (echo
command), and input script variables (variable
command).

Restrictions:

none

Related commands:

none

Default:

none

collide command

Syntax:

collide style args keyword value ...

	style = none or vss

	args = arguments for that style

	none args = none
No argument is passed

	vss args = mix-ID file
- mix-ID = ID of mixture to use for group definitions
- file = filename that lists species with their VSS model parameters

	vss/kk args = mix-ID file

	
	mix-ID = ID of mixture to use for group definitions

	file = filename that lists species with their VSS model parameters

	zero or more keyword/value pairs may be appended

	keyword = relax

	relax value = constant or variable

Examples:

collide none
collide vss all ../data/air.vss
collide vss species all.vss relax variable

Description:

Define what style of particle-particle collisions will be performed by
SPARTA each timestep. If collisions are performed, particles are sorted
into grid cells every timestep and the appropriate collision model is
invoked on a per-grid-cell basis. Collisions alter the velocity of
participating particles as well as their rotational and vibrational
energies. The rotational and vibrational properties of each species are
set in the file read by the species command.

The collision style determines how many pairs of particles are
considered for collisions, the criteria for which collisions actually
occurs, and the outcome of individual collision, which alters the
velocities of the two particles. If chemistry is enabled, via the
react command, particles involved in collisions may
also change species, or a particle may be deleted, or a new particle
created. The collide_modify command can also
be used to alter aspects of how collisions are performed. For example,
it can be used to turn on/off the tracking of vibrational energy and its
exchange in collisions.

A mix-ID argument is specified for each collision style. It must
contain all the species defined for use by the simulation, via the
species command. The group definitions in the mixture
assign one or more particle species to each group. These groupings are
used to determine how pairs of particles are chosen to collide with each
other, in the following manner.

Consider a cell with N particles and a mixture with M groups. Based on
its species, each particle is assigned to one of the M groups. Each
unique pair of groups is considered, including each group paired with
itself. For each pair of groups a value Nattempt (see equation 11.3 in
[Bird94]) is calculated which is the number of collisions
to attempt. This is a function of N1 and N2 (the number of particles in
each group), the grid cell volume, and other parameters of the collision
style.

For each collision attempt, a random pair of particles is selected, with
one particle from each group. Whether the collision occurs or not is a
function of the relative velocities of the two particles, their
respective species, and other parameters of the collision style; see
equation 11.4 in [Bird94].

Note

If you are using the ambipolar approximation with charged species, as described in Using the ambipolar approximation, and you have used the collide_modify ambipolar yes command to enable ambipolar collisions (not required), and you are using a mixture ID with multiple groups, then the ambipolar electron species must be in a group by itself.

The none style means that no particle-particle collisions will be
performed, i.e. the simulation models free-molecular flow.

The vss style implements the Variable Soft Sphere (VSS) model for
collisions. As discussed below, with appropriate parameter choices, it
can also compute the Variable Hard Sphere (VHS) model and the Hard
Sphere (HS) model. See chapters 2.6 and 2.7 in [Bird94]
for details.

In DSMC, the variable-soft-sphere (VSS) interaction of Koura and
Matsumoto [Koura92] and the variable-hard-sphere (VHS) interaction
of [Bird94] are used to approximate molecular interactions.
Both models yield transport properties proportional to a power (omega)
of the gas temperature. This temperature dependence of the transport
properties is similar to the Inverse Power Law model (IPL) for which
Chapman-Enskog theory provides closed form solutions for the transport
properties.

Both VSS and VHS interactions define parameters diam = molecular
diameter, which is a function of the molecular speed, and alpha =
angular-scattering parameter, which relates the scattering angle to the
impact parameter. Setting alpha = 1 produces isotropic (hard sphere)
interactions, which converts the VSS model into a VHS model.

The file argument is for a collision data file which contains
definitions of VSS model parameters for some number of species. Example
files are included in the data directory of the SPARTA distribution,
with a “*.css” suffix. The file can contain species not used by this
simulation; they will simply be ignored. All species currently defined
by the simulation must be present in the file.

The format of the file depends of the setting of the optional relax
keyword, as explained below. Comments or blank lines are allowed in the
file. Comment lines start with a “#” character. All other lines must
have the following format with parameters separated by whitespace.

If the relax keyword is specified as constant, which is the default,
then each line has 4 parameters following the species ID:

species-ID diam omega tref alpha

The species-ID is a string that will be matched to one of the species
defined by the simulation, via the species command.
The meaning of additional properties is as follows:

	diam = VHS or VSS diameter of particle (distance units)

	omega = temperature-dependence of viscosity (unitless)

	tref = reference temperature (temperature units)

	alpha = angular scattering parameter (unitless)

The methodology for deriving VSS/VHS parameters from these properties is
explained in Chapter 3 of [Bird94]. Parameter values for
the most common gases are given in Appendix A of the same book. These
values are based on the first-order approximation of the Chapman-Enskog
theory. Infinite-order parameters are described in
[Gallis04].

In the constant case rotational and vibrational relaxation during a
collision is treated in the same constant manner for every collision,
using the rotational and vibrational relaxation numbers from the species
data file, as read by the species command.

If the relax keyword is specified as variable, then each line has 8
parameters following the species ID:

species-ID diam omega tref alpha Zrotinf T* C1 C2

The first 4 parameters are the same as above. Parameters 5 and 6 affect
rotational relaxation; parameters 7 and 8 affect vibrational relaxation.
In this case the rotational and vibrational relaxation during a
collision is treated as a variable and is computed for each collision.
This calculation is only performed for polyatomic species, using
equations A5 and A6 on pages 413 and 414 in [Bird94], with the modification
that the collision temperature is calculated using energy in the internal
mode as well as the translational mode.

Zrotinf and T* are parameters in the numerator and denominator of eq
A5. C1 and C2 are in eq A6. The units of these parameters is as follows:

	Zrotinf (unitless)

	T* (temperature units)

	C1 (temperature units)

	C2 (temperature^(1/3) units)

Note that a collision data file with the 4 extra relaxation parameters
(per species) can be used when the relax keyword is specified as
constant. In that case, the extra parameters are simply ignored.

For interspecies collisions, the collision parameters default to
the average of the parameters for each involved species. To override
this default, lines specific to each interspecies pair can be added
anywhere in the collision data file. The format for these lines is as
described above, with the addition of a second species name. For
example, with the relax keyword specified, an interspecies
collision line would contain the following information for collisions
between species-ID and species-ID1:

In an interspecies line, a specific parameter can be returned to the
default behavior (an average) by making it negative. For example, to
override only {omega} for the above case, the line could appear as
follows:

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

collide_modify command,
mixture command,
react command

Default:

Style = none is the default (no collisions). If the vss style is specified, then relax = constant is the default.

	Koura92

	
	Koura and H. Matsumoto, “Variable soft sphere molecular model for air species,” Phys Fluids A, 4, 1083 (1992).

	Gallis04

	
	
	Gallis, J. R. Torczynski, and D. J. Rader, “Molecular gas dynamics observations of Chapman-Enskog behavior and departures therefrom in nonequilibrium gases,” Phys Rev E, 69, 042201 (2004).

collide_modify command

Syntax:

collide_modify keyword values ...

one or more keyword/value pairs may be listed

	keywords = vremax or remain or ambipolar or nearcp or
rotate or vibrate

	vremax values = Nevery startflag

	Nevery = zero vremax every this many timesteps

	startflag = yes or no = zero vremax at start of every run

	remain value = yes or no = hold remaining fraction of collisions over to next timestep

	nearcp values = choice Nlimit

	choice = yes or no to turn on/off near collision partners

	Nlimit = max # of attempts made to find a collision partner

	ambipolar value = no or yes

	rotate value = no or smooth

	vibrate value = no or smooth or discrete

Examples:

collide_modify vremax 1000 yes
collide_modify vremax 0 no remain no
collide_modify ambipolar yes

Description:

Set parameters that affect how collisions are performed.

The vremax keyword affects how often the Vremax parameter, for
collision frequency is re-zeroed during the simulation. This parameter
is stored for each grid cell and each pair of collision groups (groups
are described by the collide command).

The value of Vremax affects how many events are attempted in each grid
cell for a pair of groups, and thus the overall time spent performing
collisions. Vremax is continuously set to the largest difference in
velocity between a pair of colliding particles. The larger Vremax grows,
the more collisions are attempted for the grid cell on each timestep,
though this does not affect the number of collisions actually performed.
Thus if Vremax grows large, collisions become less efficient, though
still accurate.

For non-equilibrium flows, it is typically desirable to reset Vremax to
zero fairly frequently (e.g. every 1000 steps) so that it does not
become large, due to anomolously fast moving particles. In contrast,
when a system is at equilibrium, it is typically desirable to not reset
Vremax to zero since it will also stay roughly constant.

If Nevery is specified as 0, Vremax is not zeroed during a run.
Otherwise Vremax is zeroed on timesteps that are a multiple of Nevery.
Additionally, if startflag is set to yes, Vremax is zeroed at the
start of every run. If it is set to no, it is not.

The remain keyword affects how the number of attempted collisions for
each grid cell is calculated each timestep. If the value is set to
yes, then any fractional collision count (for each grid cell and pair
of grgroups) is carried over to the next timestep. E.g. if the computed
collision count is 7.3, then 7 attempts are made on this timestep, and
0.3 are carried over to the next timestep, to be added to the computed
collision count for that step. If the value is set to no, then no
carry-over is made. Instead, in this example, 7 attempts are made and an
8th attempt is made conditionally with a probability of 0.3, using a
random number.

The nearcp keyword stands for “near collision partner” and affects how
collision partners are selected. If no is specified, which is the
default, then collision partner pairs are selected randomly from all
particles in the grid cell. In this case the Nlimit parameter is
ignored, though it must still be specfied.

If yes is specified, then up to Nlimit collision partners are
considered for each collision. The first partner I is chosen randomly
from all particles in the grid cell. A distance R that particle I moves
in that timestep is calculated, based on its velocity. Nlimit possible
collision partners J are examined, starting at a random J. If one of
them is within a distance R of particle I, it is immediately selected as
the collision partner. If none of the Nlimit particles are within a
distance R, the closest J particle to I is selected. An exception to
these rules is that a particle J is not considered for a collision if
the I,J pair were the most recent collision partners (in the current
timestep) for each other. The convergence properties of this
near-neighbor algorithm are described in [Gallis11].
Note that choosing Nlimit judiciously will avoid costly searches when
there are large numbers of particles in some or all grid cells.

If the ambipolar keyword is set to yes, then collisions within a
grid cell with use the ambipolar approximation. This requires use of the
fix ambipolar command to define which species
is an electron and which species are ions. There can be many of the
latter. When collisions within a single grid cell are performed, each
ambipolar ion is split into two particles, the ion and an associated
electron. Collisions between the augmented set of particles are
calculated. Ion/electron chemistry can also occur if the
react command has been used to read a file of reactions
that include such reactions. See the react command doc
page. After all collisions in the grid cell have been computed, there is
still a one-to-one correspondence between ambipolar ions and electron,
and each pair is recombined into a single ambipolar particle.

The rotate keyword determines how rotational energy is treated in
particle collisions and stored by particles. If the value is set to
no, then rotational energy is not tracked; every particle’s rotational
energy is 0.0. If the value is set to smooth, a particle’s rotational
energy is a single continuous value.

The vibrate keyword determines how vibrational energy is treated in
particle collisions and stored by particles. If the value is set to
no, then vibrational energy is not tracked; every particle’s
vibrational energy is 0.0. If the value is set to smooth, a particle’s
vibrational energy is a single continuous value. If the value is set to
discrete, each particle’s vibrational energy is set to discrete
values, namely multiples of kT where k = the Boltzmann constant and T is
one or more characteristic vibrational temperatures set for the particle
species.

Note that in the discrete case, if any species are defined that have
4,6,8 vibrational degrees of freedom, which correspond to 2,3,4
vibrational modes, then the species command must be
used with its optional vibfile keyword to set the vibrational info
(temperature, relaxation number, degeneracy) for those species.

Also note that if any such species are defined (with more than one
vibrational mode, then use of the discrete option also requires the
fix vibmode command be used to allocate storage
for the per-particle mode values.

Restrictions:

none

Related commands:

collide command

Default:

The option defaults are vremax = (0,yes), remain = yes, ambipolar no,
nearcp no, rotate smooth, and vibrate = no.

	Gallis11

	
	
	Gallis, J. R. Torczynski, “Effect of Collision-Partner Selection Schemes on the Accuracy and Efficiency of the Direct Simulation Monte Carlo Method,” International Journal for Numerical Methods in Fluids, 67(8):1057-1072. DOI:10.1002/fld.2409 (2011).

compute command

Syntax:

compute ID style args

	ID = user-assigned name for the computation

	style = one of a list of possible style names (see below)

	args = arguments used by a particular style

Examples:

compute 1 ke/particle
compute myGrid all n mass u usq temp

Description:

Define a computation that will be performed on a collection of particles
or grid cells or surface elements. Quantities calculated by a compute
are instantaneous values, meaning they are calculated from information
about the current timestep. Examples include calculation of the system
temperature or counting collisions of particles with surface elements.
Code for new computes can be added to SPARTA; see Section 10 of the manual for details.

Note that defining a compute does not perform a computation. Instead
computes are invoked by other SPARTA commands as needed, e.g. to
generate statistics or dump file output. See Section 4.4 for a summary of various SPARTA
output options, many of which involve computes.

The ID for a compute is used to identify the compute in other commands.
Each compute ID must be unique. The ID can only contain alphanumeric
characters and underscores. You can specify multiple computees of the
same style so long as they have different IDs. A compute can be deleted
with the uncompute command, after which its ID can
be re-used.

Each compute style has its own doc page which describes its arguments
and what it does. Here is an alphabetic list of compute styles available
in SPARTA:

	boundary - various quantities on each
global boundary

	count - particle counts for species and
mixtures and mixture groups

	distsurf/grid - distance from grid
cells to surface

	eflux/grid - energy flux density per
grid cell

	fft/grid - FFTs across grid cells

	grid - various per grid cell quantities

	isurf/grid - various implicit surface
element quantities

	ke/particle - temperature per particle

	lambda/grid - mean-free path per grid
cell

	pflux/grid - momentum flux density per
grid cell

	property/grid - per grid cell
properties

	react/boundary - reaction stats on
global boundary

	react/surf = reaction stats for
explicit surfs

	react/isurf/grid - reactions
stats for implicit surfs

	reduce - reduce vectors to scalars

	sonine/grid - Sonine moments per grid
cell

	surf - various explicit surface element
quantities

	thermal/grid - thermal temperature
per grid cell

	temp - temperature of particles

	tvib/grid - vibrational temperature per
grid cell

There are also additional accelerated compute styles included in the
SPARTA distribution for faster performance on specific hardware. The
list of these with links to the individual styles are given in the pair
section of this page.

Computes calculate one of four styles of quantities: global,
per-particle, per-grid, or per-surf. A global quantity is one or more
system-wide values, e.g. the temperature of the system. A per-particle
quantity is one or more values per particle, e.g. the kinetic energy of
each particle. A per-grid quantity is one or more values per grid cell.
A per-surf quantity is one or more values per surface element.

Global, per-particle, per-grid, and per-surf quantities each come in two
forms: a single scalar value or a vector of values. Additionaly, global
quantities can also be a 2d array of values. The doc page for each
compute describes the style and kind of values it produces, e.g. a
per-particle vector. Some computes can produce more than one form of a
single style, e.g. a global scalar and a global vector.

When a compute quantity is accessed, as in many of the output commands
discussed below, it can be referenced via the following bracket
notation, where ID is the ID of the compute:

	c_ID

	entire scalar, vector, or array

	c_ID[I]

	one element of vector, one column of array

	c_ID[I][J]

	one element of array

In other words, using one bracket reduces the dimension of the quantity
once (vector -> scalar, array -> vector). Using two brackets reduces the
dimension twice (array -> scalar). Thus a command that uses scalar
compute values as input can also process elements of a vector or array.

Note that commands and variables which use compute
quantities typically do not allow for all kinds, e.g. a command may
require a vector of values, not a scalar. This means there is no
ambiguity about referring to a compute quantity as f_ID even if it
produces, for example, both a scalar and vector. The doc pages for
various commands explain the details.

The values generated by a compute can be used in several ways:

	Global values can be output via the
stats_style command. Or the values can be
referenced in a variable equal or variable atom command.

	Per-particle values can be output via the dump particle command. Or the values can be referenced in a
particle-style variable.

	Per-grid values can be output via the dump grid
command. They can be time-averaged via the fix ave/grid command.

	Per-surf values can be output via the dump surf
command. They can be time-averaged via the fix ave/surf command.

Restrictions:

none

Related commands:

uncompute command

Default:

none

compute boundary command

Syntax:

compute ID boundary mix-ID value1 value2 ...

compute ID boundary/kk mix-ID value1 value2 ...

	ID is documented in compute command

	boundary = style name of this compute command

	mix-ID = mixture ID to perform calculation on

	one or more values can be appended

value = n or nwt or mflux or press or shx or shy or shz or ke or erot or evib or etot

	n = count of particles hitting boundary

	nwt = weighted count of particles hitting boundary

	mflux = flux of mass on boundary

	press = magnitude of normal pressure on boundary

	shx,shy,shz = components of shear stress on boundary

	ke = flux of particle kinetic energy on boundary

	erot = flux of particle rotational energy on boundary

	evib = flux of particle vibrational energy on boundary

	etot = flux of particle total energy on boundary

Examples:

compute 1 boundary all n press eng
compute mine boundary species press shx shy shz

These commands will print values for the current timestep for the xlo
and xhi boundaries, as part of statistical output:

compute 1 boundary all n press
stats_style step np c_1[1][1] c_1[1][2] c_1[2][1] c_1[2][2]

These commands will dump time averages for each species and each
boundary to a file every 1000 steps:

compute 1 boundary species n press shx shy shz
fix 1 ave/time 10 100 1000 c_1[*] mode vector file tmp.boundary

Description:

Define a computation that calculates one or more values for each
boundary (i.e. face) of the simulation box, based on the particles that
cross or collide with the boundary. The values are summed for each group
of species in the specified mixture. See the mixture
command for how a set of species can be partitioned into groups.

Note that depending on the settings for the boundary
command, when a particle collides with a boundary, it can exit the
simulation box (outflow), re-enter from the other side (periodic),
reflect specularly from the boundary, or interact with it as if it were
a surface. In the surface case, the incident particle may bounce off
(possibly as a different species), be captured by the boundary (vanish),
or a 2nd particle can also be emitted. The formulas below account for
all these possible scenarios. As an example, the pressure exerted on an
outflow boundary versus a specularly reflecting boundary is different,
since in the former case there is no net momentum flux back into the
simulation box by reflected particles.

Also note that all values for a boundary collision are tallied based on
the species group of the incident particle. Quantities associated with
outgoing particles are part of the same tally, even if they are in
different species groups.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
stats_style command.

The values over many sampling timesteps can be averaged by the fix ave/time command. It does its averaging as if the
particles striking the boundary at each sampling timestep were combined
together into one large set to compute the formulas below. The answer is
then divided by the number of sampling timesteps if it is not otherwise
normalized by the number of particles. Note that in general this is a
different normalization than taking the values produced by the formulas
below for a single timestep, summing them over the sampling timesteps,
and then dividing by the number of sampling steps. However for the
current values listed below, the two normalization methods are the same.

Note

If particle weighting is enabled via the global weight command, then all of the values below are scaled by the weight assigned to the grid cell in which the particle collision with the boundary occurs. The only exception is the the n value, which is NOT scaled by the weight; it is a simple count of particle crossings or collisions with the boundary.

	The n value

	counts the number of particles in the group crossing or colliding with the boundary.

	The nwt value

	counts the number of particles in the group crossing or colliding with the boundary and weights the count by the weight assigned to the grid cell in which the particle collision with the boundary occurs. The nwt quantity will only be different than n if particle weighting is enabled via the global weight command.

	The mflux value

	calculates the mass flux imparted to the boundary by particles in the group. This is computed as

Mflux = Sum_i (mass_i) / (A * dt / fnum)

where the sum is over all contributing particle masses, normalized by A = the area of the surface element, dt = the timestep, and fnum = the real/simulated particle ratio set by the global fnum command.

	The press value

	calculates the pressure P exerted on the boundary in the normal direction by particles in the group, such that outward pressure is positive. This is computed as

p_delta = mass * (V_post - V_pre)
P = Sum_i (p_delta_i dot N) / (A * dt / fnum)

where A, dt, fnum are defined as before. P_delta is the change in momentum of a particle, whose velocity changes from V_pre to V_post when colliding with the boundary. The pressure exerted on the boundary is the sum over all contributing p_delta dotted into the normal N of the boundary which is directed into the box, normalized by A = the area of the boundary face and dt = the timestep and fnum = the real/simulated particle ratio set by the global fnum command.

	The shx, shy, shz values

	calculate the shear pressure components Sx, Sy, Sz extered on the boundary in the tangential direction to its normal by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
p_delta_t = p_delta - (p_delta dot N) N
Sx = - Sum_i (p_delta_t_x) / (A * dt / fnum)
Sy = - Sum_i (p_delta_t_y) / (A * dt / fnum)
Sz = - Sum_i (p_delta_t_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, dt, and fnum are defined as before. P_delta_t is the tangential component of the change in momentum vector p_delta of a particle. P_delta_t_x (and y,z) are its x, y, z components.

	The ke value

	calculates the kinetic energy flux Eflux imparted to the boundary by particles in the group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = 1/2 mass (V_post^2 - V_pre^2)
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the kinetic energy change in a particle, whose velocity changes from V_pre to V_post when colliding with the boundary. The energy flux imparted to the boundary is the sum over all contributing e_delta, normalized by A = the area of the boundary face and dt = the timestep and fnum = the real/simulated particle ratio set by the global fnum command.

	The erot value

	calculates the rotational energy flux Eflux imparted to the boundary by particles in the group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = Erot_post - Erot_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the rotational energy change in a particle, whose internal rotational energy changes from Erot_pre to Erot_post when colliding with the boundary. The flux equation is the same as for the ke value.

	The evib value

	calculates the vibrational energy flux Eflux imparted to the boundary by particles in the group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = Evib_post - Evib_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the vibrational energy change in a particle, whose internal vibrational energy changes from Evib_pre to Evib_post when colliding with the boundary. The flux equation is the same as for the ke value.

	The etot value

	calculates the total energy flux imparted to the boundary by particles in the group, such that energy lost by a particle is a positive flux. This is simply the sum of kinetic, rotational, and vibrational energies. Thus the total energy flux is the sum of what is computed by the ke, erot, and evib values.

Output info:

This compute calculates a global array, with the number of columns equal
to the number of values times the number of groups. The ordering of
columns is first by values, then by groups. I.e. if the n and u
values were specified as keywords, then the first two columns would be
n and u for the first group, the 3rd and 4th columns would be n
and u for the second group, etc. The number of rows is 4 for a 2d
simulation for the 4 faces (xlo, xhi, ylo, yhi), and it is 6 for a 3d
simulation (xlo, xhi, ylo, yhi, zlo, zhi).

The array can be accessed by any command that uses global array values
from a compute as input. See Section 6.4 for an overview of SPARTA output options.

The array values will be in the units appropriate to
the individual values as described above. N is unitless. Press,
shx, shy, shz are in pressure units. Ke, erot, evib, and
etot are in energy/area-time units for 3d simulations and
energy/length-time units for 2d simulations.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The accelerated styles take the same arguments and should produce the same results, except for different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

If specified with a kk suffix, this compute can be used no more than
twice in the same input script (active at the same time).

Related commands:

fix ave/time command

Default:

none

compute count command

compute count/kk command

Syntax:

compute ID count id1 id2 ...

	ID is documented in compute command

	count = style name of this compute command

	id1,id2,… = species ID or mixture ID or mixture/group

	species ID = ID used with the species command

	mixture ID = ID used with the mixture command, expands to all groups in mixture

	mixture/group = ID of mixture followed by name of a group within mixture

Examples:

compute 1 count species
compute Ncounts count N N2 N+ air/O

Description:

Define a computation that counts the number of particles currently in
the simulation for various species or groups within mixtures. Groups are
collections of one or more species within a mixture. See the “mixture”
command for an explanation of how species are added to a mixture and how
groups of species within the mixture are defined.

Each of the listed ids (id1, id2, etc) can be in one of three formats.
Any of the ids can be in any of the formats.

An id can be a species ID, in which case the count is for particles of
that species.

An id can be a mixture ID, in which case one count is performed for
each of the groups within the mixture. In the first example above,
“species” is the name of a default mixture which assigns every species
defined for the simulation to its own group. If there are 10 species in
the simulation, there will thus be 10 counts calculated, the same as if
the command had been specified with explicit names for all 10 species,
e.g.

compute 1 count O2 N2 O N NO O2+ N2+ O+ N+ NO+

An id can also be of the form mix-ID/name where mix-ID is a mixture ID
and name is the name of a group in that mixture.

Output info:

If there is a single count accumulated, this compute calculates a global
scalar. If there are multiple counts accumulated, it calculates a global
vector with a length = number of counts. These results can be used by
any command that uses global scalar or vector values from a compute as
input. See Section 4.4 for an overview
of SPARTA output options.

The values will all be unitless counts.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

It is an error if a listed id is both a species ID and a mixture ID,
since this command cannot distinguish between them.

Related commands:

none

Default:

none

compute distsurf/grid command

compute distsurf/grid/kk command

Syntax:

compute ID distsurf/grid group-ID surf-ID keyword args ...

	ID is documented in compute command

	distsurf/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	surf-ID = group ID for which surface elements to consider

	zero or more keyword/args pairs may be appended

	keyword = dir

	dir args = Sx Sy Sz: direction vector used to test surf elements

Examples:

compute 1 distsurf/grid all all
compute 1 distsurf/grid subset sphere2 dir 1 0 0

:line

Styles with a {kk} suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in the Accelerating SPARTA performance section of the manual.
The accelerated styles take the same arguments and should produce the
same results, except for different random number, round-off and
precision issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the
-suffix command-line switch

when you invoke SPARTA, or you can

use the suffix command in your input script.

See the Accelerating SPARTA performance section of the manual for more
instructions on how to use the accelerated styles effectively.

Description:

Define a computation that calculates the minimum distance from each grid
cell in a grid cell group to any surface element in a surface element
group. This is useful for grid adaptation; the
adapt_grid command can use the compute as a
criterion for refining or coarsening individual grid cells.

Only grid cells in the grid group specified by group-ID are included
in the calculation. See the group grid command for info
on how grid cells can be assigned to grid groups. Only surface elements
in the surface element group specified by surf-ID are included in the
distance calculations. See the group surf command for
info on how surface elements can be assigned to surface element groups.

If the dir keyword is specified it can exclude additional surface
elements. The Sx,Sy,Sz settings are components of a vector. It’s length
does not matter, just its direction. Only surface elements whose normal
is opposed to the vector direction (in a dot product sense) are eligible
surfaces for the distance calculations. This can be useful to exclude
surface elements that are not facing “upwind” with respect to the flow
direction of the particles. I.e. by setting Sx,Sy,Sz to the flow
direction. If Sy,Sy,Sz = (0,0,0), which is the default, then no surface
elements are excluded by this criterion.

Each grid cell also only considers a subset of eligible surfaces in its
distance calculations. A vector from the grid cell center to the center
of each surface element is calculated. If that vector is opposed to the
normal vector of the surface element (in a dot product sense), the
distance from the grid cell to the surface is calculated. This means
that for an individual grid cell, only surface elements that are
“facing” the grid cell are considered.

The “distance” between a grid cell and a surface element is the minimum
distance between the two geometric entities. If the surface element
overlaps with the grid cell, the distance is 0.0. Otherwise the distance
is the minimum distance between the perimeter of the grid cell and the
line segment (in 2d) or the perimeter of the triangle (in 3d).

Here is an example of using this compute with the
adapt_grid command to adapt the grid around the
upwind side of a circular object (flow is from the left boundary of the
box). The first adapt_grid command uses a threshold distance value of
0.5 to create refine grid cells once. The second adapt_grid command uses
a threshold distance value of 0.1 to create some of the grid cells
closer to the surface a second time.

Note

include pic

Here is an example of how to use this compute with two successive
“adapt_grid” commands. The first refines once for grid cells within a
distance of 0.3 from surface elements facing upwind. The second refines
again for grid cells within a distance of 0.1 from the surface elements.

+compute 5 distsurf/grid all all dir 1 0 0
adapt_grid all refine value c_5 0.3 0.0 thresh less more
adapt_grid all refine value c_5 0.1 0.0 thresh less more

For a 2d simulation of flow around a circle (flow from right to left),
these commands produce this kind of adapted grid (click for a larger
image):

[image: image0]

Output info:

This compute calculates a per-grid vector whose values are the distances
of each grid cell from any of the surface elements.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The vector can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values for the vector will be in distance
units.

Styles with a kk suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in the
Accelerating SPARTA section of the manual.
The accelerated styles take the same arguments and should produce the
same results, except for different random number, round-off and
precision issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you can
use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

None

Related commands:

adapt_grid command

Default:

The keyword default is dir = 0,0,0.

compute eflux/grid command

compute eflux/grid/kk command

Syntax:

compute ID eflux/grid group-ID mix-ID value1 value2 ...

	ID is documented in compute command

	eflux/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	mix-ID = mixture ID to perform calculation on

	one or more values can be appended

	values = heatx or heaty or heatz

	heatx,heaty,heatz = xyz components of energy flux density tensor

Examples:

compute 1 eflux/grid all species heatx heaty heatz
compute 1 eflux/grid subset species heaty

These commands will dump time averaged energy flux densities for each
species and each grid cell to a dump file every 1000 steps:

compute 1 eflux/grid all species heatx heaty heatz
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates components of the energy flux
density vector for each grid cell in a grid cell group. This is also
called the heat flux density vector, and is based on the thermal
velocity of the particles in each grid cell. The values are tallied
separately for each group of species in the specified mixture, as
described in the Output section below. See the mixture command for how a
set of species can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included
in the calculations. See the group grid command for
info on how grid cells can be assigned to grid groups.

The values listed above rely on first computing and subtracting the
center-of-mass (COM) velocity for all particles in the group and grid
cell from each particle to yield a thermal velocity. This thermal
velocity is used to compute the components of the energy flux density
vector, as described below. This is in contrast to some of the values
tallied by the compute grid temp command which
simply uses the full velocity of each particle to compute a momentum or
kinetic energy density. For non-streaming simulations, the two results
should be similar, but for streaming flows, they will be different.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as if the
particles in the cell at each sampling timestep were combined together
into one large set of particles to compute the formulas below.

Note that the center-of-mass (COM) velocity that is subtracted from each
particle to yield a thermal velocity for each particle, as described
below, is also computed over one large set of particles (across all
timesteps), in contrast to using a COM velocity computed only for
particles in the current timestep, which is what the compute sonine/grid command does.

Note that this is a different form of averaging than taking the values
produced by the formulas below for a single timestep, summing those
values over the sampling timesteps, and then dividing by the number of
sampling steps.

Calculation of the energy flux density is done by first calcuating the
center-of-mass (COM) velocity of particles for each group with a grid
cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each
particle is (Cx,Cy,Cz), i.e. its velocity minus the COM velocity of
particles in its group and cell.

The heatx, heaty, heatz values compute the components of the
energy flux density vector due to particles in the group as follows:

heatx = 0.5 * fnum/volume Sum_i (mass_i Cx Csq)
heaty = 0.5 * fnum/volume Sum_i (mass_i Cy Csq)
heatz = 0.5 * fnum/volume Sum_i (mass_i Cz Csq)

Note that if particle weighting is enabled via the global weight command, then the volume used in the formula is
divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns
equal to the number of values times the number of groups. The ordering
of columns is first by values, then by groups. I.e. if momxx and
momxy values were specified as keywords, then the first two columns
would be momxx and momxy for the first group, the 3rd and 4th
columns would be momxx and momxy for the second group, etc.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. Note
that cells inside closed surfaces contain no particles. These could be
unsplit or cut cells (if they have zero flow volume). Both of these
kinds of cells will compute a zero result for all their values.
Likewise, split cells store no particles and will produce a zero result.
This is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units of
energy flux density = energy-velocity/volume units.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

compute grid
compute thermal/grid,
compute pflux/grid command,
fix ave/grid command,
dump grid

Default:

none

compute fft/grid command

Syntax:

compute ID fft/grid value1 value2 ... keyword args ...

	ID is documented in compute command

	fft/grid = style name of this compute command

	one or more values can be appended

	value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

	c_ID = per-grid vector calculated by a compute with ID

	c_ID[I] = Ith column of per-grid array calculated by a compute with ID

	f_ID = per-grid vector calculated by a fix with ID

	f_ID[I] = Ith column of per-grid or array calculated by a fix with ID

	v_name = per-grid vector calculated by a grid-style variable with name

	zero or more keyword/arg pairs can be appended

keyword = sum or scale or conjugate or kmag

	sum = yes or no to sum all FFTs into a single output

	scale = sfactor = numeric value to scale results by

	conjugate = yes or no = perform complex conjugate multiply or not

	kx = yes or no = calculate x-component of wavelength or not

	kx = yes or no = calculate y-component of wavelength or not

	kx = yes or no = calculate z-component of wavelength or not

	kmag = yes or no = calculate wavelength magnitude or not

Examples:

compute 1 fft/grid c_1

These commands will dump FFTs of instantaneous and time-averaged
velocity components in each grid cell to a dump file every 1000 steps:

compute 1 grid all u v w
fix 1 ave/grid 10 100 1000 c_1
compute 2 fft/grid f_11 f_12 f_13
dump 1 grid all 1000 tmp.grid id c_2 f_1

Description:

Define a computation that performs forward FFTs on per-grid values. This can be
useful, for example, in calculating the energy spectrum of a turbulent
flow.

The defined grid must be a regular one-level grid (not hierarchical)
with an even number of grid cells in each dimension. Depending on the
dimension of the simulation, either 2d or 3d FFTs
will be performed. Because FFTs assume a periodic field, the simulation
domain should be periodic in all dimensions, as set by the
boundary command, though SPARTA does not check for
that.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command. The values over many sampling
timesteps can be averaged by the fix ave/grid
command.

A FFT is performed on each input value independently.

Each listed input can be the result of a compute or
fix or the evaluation of a variable,
all of which must generate per-grid quantities.

If a value begins with c_, a compute ID must follow which has been
previously defined in the input script. The compute must generate a
per-grid vector or array. See the individual compute
doc page for details. If no bracketed integer is appended, the vector
calculated by the compute is used. If a bracketed integer is appended,
the Ith column of the array calculated by the compute is used. Users can
also write code for their own compute styles and add them to SPARTA.

If a value begins with f_, a fix ID must follow which has been
previously defined in the input script. The fix must generate a per-grid
vector or array. See the individual fix command doc page for
details. Note that some fixes only produce their values on certain
timesteps, which must be compatible with when this compute references
the values, else an error results. If no bracketed integer is appended,
the vector calculated by the fix is used. If a bracketed integer is
appended, the Ith column of the array calculated by the fix is used.
Users can also write code for their own fix style and add them to SPARTA.

If a value begins with v_, a variable name must follow which has been
previously defined in the input script. It must be a grid-style variable. Such a variable defines a formula which can
reference stats keywords or invoke other computes, fixes, or variables
when they are evaluated. So this is a very general means of creating a
per-grid input to perform an FFT on.

If the sum keyword is set to yes, the results of all FFTs will be
summed together, grid value by grid value, to create a single output.

The result of each FFT is scaled by the sfactor value of the scale
keyword, whose default is 1.0. Note that forward FFTs do
not perform any scaling of their own; backward FFTs scale each output
value by N = # of points in the FFT grid.

If the conjugate keyword is set to no, the result of each FFT is 2
values for each grid point, the real and imaginary parts of a complex
number. If the conjugate keyword is set to yes, the complex value
for each grid point is multiplied by its complex conjugate to yield a
single real-valued number for each grid point. Note that this value is
effectively the squared length of the complex 2-vector with real and
imaginary components.

If one or more of the kx, ky, kz, or kmag keywords are set to
yes, then one or more extra columns of per-grid output is generated.
For kx the x-component of the K-space wavevector is generated.
Similarly for ky and kz. For kmag the length of each K-space
wavevector is generated. These values can be useful, for example, for
histogramming an energy spectrum computed from the FFT of a velocity
field, as a function of wavelength or a component of the wavelength.

Note that the wavevector for each grid cell is indexed as (Kx,Ky,Kz).
Those indices are the x,y,z components output by the kx, ky, kz
keywords. The total wavelength, which is output by the kmag keyword,
is sqrt(Kx^2 + Ky^2 + Kz^2) for 3d models and sqrt(Kx^2 + Ky^2) for 2d
models. For all keywords, the Kx,Ky,Kz represent distance from the
origin in a periodic sense. Thus for a grid that is NxMxP, the Kx values
associated with the x-dimension and used in those formulas are not Kx =
0,1,2 … N-2,N-1. Rather they are Kx = 0,1,2, … N/2-1, N/2, N/2-1,
… 2,1. Similary for Ky in the y-dimension with a max index of M/2, and
Kz in the z-dimension with a max index of P/2.

Output info:

The number of per-grid values ouptut by this compute depends on the
optional keyword settings. The number of FFTs is equal to the number of
specified input values.

There are 2 columns of output per FFT if sum = no and conjugate =
no, with real and imaginary components for each FFT. There is 1 column
of output per FFT if sum = no and conjugate = yes. There are 2
columns of output if sum = yes and conjugate = no, with real and
imaginary components for the sum of all the FFTs. There is one column of
output for sum = yes and conjugate = yes. For all these cases, there
is one extra column of output for each of the kx, ky, kz, kmag
keywords if they are set to yes. The extra columns come before the FFT
columns, in the order kx, ky, kz, kmag. Thus is only ky and
kmag are set to yes, there will be 2 extra columns, the first for ky
and the 2nd for kmag.

If the total number of output columns = 1, then this compute produces a
per-grid vector as output. Otherwise it produces a per-grid array.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section of the manual gives details of how
SPARTA defines child, unsplit, split, and sub cells. Note that cells
inside closed surfaces contain no particles. These could be unsplit or
cut cells (if they have zero flow volume). Both of these kinds of
cells will compute a zero result for all their values. Likewise,
split cells store no particles and will produce a zero result. This
is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

The array can be accessed by any command that uses per-grid values
from a compute as input. See Section <howto-output> for an overview
of SPARTA output options.

The per-grid vector or array values will be in the units appropriate to the FFT operations as described
above. The K-space wavevector magnitudes are effectively unitless,
e.g. sqrt(Kx^2 + Ky^2 + Kz^2) where Kx,Ky,Kz are integers. The FFT
values can be real or imaginary or squared values in K-space resulting
from FFTs of per-grid quantities in whatever units the specified input
values represent.

Restrictions:

This style is part of the FFT package. It is only enabled if SPARTA
was built with that package. See the Getting Started section for more info.

Related commands:

fix ave/grid command, dump command,
compute grid command

Default:

The option defaults are sum = no, scale = 1.0, conjugate = no, kmag = no.

compute grid command

compute grid/kk command

Syntax:

compute ID grid group-ID mix-ID value1 value2 ...

	ID is documented in compute command

	grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	mix-ID = mixture ID to perform calculation on

	one or more values can be appended:

value = n or nrho or nfrac or mass or massrho or massfrac or u or v or w or usq or vsq or wsq of ke or temp or erot or trot or evib or tvib or pxrho or pyrho or pzrho or kerho

	n = particle count

	nrho = number density

	nfrac = number fraction

	mass = mass

	massrho = mass density

	massfrac = mass fraction

	u = x component of velocity

	v = y component of velocity

	w = z component of velocity

	usq = x component of velocity squared

	vsq = y component of velocity squared

	wsq = z component of velocity squared

	ke = kinetic energy

	temp = temperature

	erot = rotational energy

	trot = rotational temperature

	evib = vibrational energy

	tvib = vibrational temperature (classical definition)

	pxrho = x component of momentum density

	pyrho = y component of momentum density

	pzrho = z component of momentum density

	kerho = kinetic energy density

Examples:

compute 1 grid all species n u v w usq vsq wsq
compute 1 grid subset air n u v w

These commands will dump time averages for each species and each grid
cell to a dump file every 1000 steps:

compute 1 grid all species n u v w usq vsq wsq
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates one or more values for each grid
cell in a grid cell group, based on the particles in the cell. The
values are tallied separately for each group of species in the specified
mixture, as described in the Ouput section below. See the
mixture command for how a set of species can be
partitioned into groups. Only grid cells in the grid group specified by
group-ID are included in the calculations. See the group grid command for info on how grid cells can be assigned
to grid groups.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as if the
particles in the cell at each sampling timestep were combined together
into one large set of particles to compute the formulas below.

Note that for most of the values, this is a different form of averaging
than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then
dividing by the number of sampling steps.

The n value counts the number of particles in each group. When
accumulated over multiple sampling steps, this value is normalized by
the number of sampling steps.

The nrho value computes the number density for the grid cell volume
due to particles in each group:

Nrho = fnum/volume * N

N is the number of particles (same as the n keyword), fnum is the
real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When
accumulated over multiple sampling steps, this value is normalized by
the number of sampling steps. Note that if particle weighting is enabled
via the global weight command, then the volume used in
the formula is divided by the weight assigned to the grid cell.

The nfrac value computes the number fraction of particles in each
group:

Nfrac = Ngroup / Ntotal

Ngroup is the count of particles in the group and Ntotal is the total
number of particles in all groups in the mixture. Note that this total
is not (necessarily) all particles in the cell.

The mass value computes the average mass of particles in each group:

Mass = Sum_i (mass_i) / N

where Sum_i is a sum over particles in the group.

The massrho value computes the mass density for the grid cell volume
due to particles in each group:

Massrho = fnum/volume * Sum_i (mass_i)

where Sum_i is a sum over particles in the group, fnum is the
real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When
accumulated over multiple sampling steps, this value is normalized by
the number of sampling steps. Note that if particle weighting is enabled
via the global weight command, then the volume used in
the formula is divided by the weight assigned to the grid cell.

The massfrac value computes the mass fraction of particles in each
group:

Massfrac = Sum_i (mass_i) / Masstotal

where Sum_i is a sum over particles in the group and Masstotal is the
total mass of particles in all groups in the mixture. Note that this
total is not (necessarily) the mass of all particles in the cell.

The u, v, w values compute the components of the mass-weighted
average velocity of particles in each group:

U = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
V = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
W = Sum_i (mass_i Vz_i) / Sum_i (mass_i)

This is the same as the center-of-mass velocity of particles in each
group.

The usq, vsq, wsq values compute the average mass-weighted squared
components of the velocity of particles in each group:

Usq = Sum_i (mass_i Vx_i Vx_i) / Sum_i (mass_i)
Vsq = Sum_i (mass_i Vy_i Vy_i) / Sum_i (mass_i)
Wsq = Sum_i (mass_i Vz_i Vz_i) / Sum_i (mass_i)

The ke value computes the average kinetic energy of particles in each
group:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = Sum_i (1/2 mass_i Vsq_i) / N

Note that this is different than the group’s contribution to the average
kinetic energy of entire grid cells. That can be calculated by
multiplying the ke quantity by the n quantity.

The temp value first computes the average kinetic energy of particles
in each group, as for the ke value. This is then converted to a
temperature T by the following formula where kB is the Boltzmann
factor:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = Sum_i (1/2 mass_i Vsq_i) / N
T = KE / (3/2 kB)

Note that this definition of temperature does not subtract out a net
streaming velocity for particles in the grid cell, so it is not a
thermal temperature when the particles have a non-zero streaming
velocity. See the compute thermal/grid
command to calculate thermal temperatures after subtracting out
streaming components of velocity.

The erot value computes the average rotational energy of particles in
each group:

Erot = Sum_i (erot_i) / N

Note that this is different than the group’s contribution to the average
rotational energy of entire grid cells. That can be calculated by
multiplying the erot quantity by the n quantity.

The trot value computes a rotational temperature by the following
formula where kB is the Boltzmann factor:

Trot = (2/kB) Sum_i (erot_i) / Sum_i (dof_i)

Dof_i is the number of rotational degrees of freedom for particle i.

The evib value computes the average vibrational energy of particles in
each group:

Evib = Sum_i (evib_i) / N

Note that this is different than the group’s contribution to the average
vibrational energy of entire grid cells. That can be calculated by
multiplying the evib quantity by the n quantity.

The tvib value computes a classical definition of vibrational
temperature, valid for continous distributions of vibrational energy, by
the following formula where kB is the Boltzmann factor:

Tvib = (2/kB) Sum_i (evib_i) / Sum_i (dof_i)

Dof_i is the number of vibrational degrees of freedom for particle i.

The pxrho, pyrho, pzrho values compute components of momentum
density for the grid cell volume due to particles in each group:

Pxrho = fnum/volume * Sum_i (mass_i * Vx_i)
Pyrho = fnum/volume * Sum_i (mass_i * Vy_i)
Pzrho = fnum/volume * Sum_i (mass_i * Vz_i)

where Sum_i is a sum over particles in the group, fnum is the
real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When
accumulated over multiple sampling steps, this value is normalized by
the number of sampling steps. Note that if particle weighting is enabled
via the global weight command, then the volume used in
the formula is divided by the weight assigned to the grid cell.

The kerho value computes the kinetic energy density for the grid cell
volume due to particles in each group:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KErho = fnum/volume * Sum_i (mass_i * Vsq_i)

where Sum_i is a sum over particles in the group, fnum is the
real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When
accumulated over multiple sampling steps, this value is normalized by
the number of sampling steps. Note that if particle weighting is enabled
via the global weight command, then the volume used in
the formula is divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns
equal to the number of values times the number of groups. The ordering
of columns is first by values, then by groups. I.e. if the n and u
values were specified as keywords, then the first two columns would be
n and u for the first group, the 3rd and 4th columns would be n
and u for the second group, etc.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. Note
that cells inside closed surfaces contain no particles. These could be
unsplit or cut cells (if they have zero flow volume). Both of these
kinds of cells will compute a zero result for all their values.
Likewise, split cells store no particles and will produce a zero result.
This is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units
appropriate to the individual values as described above. N is
unitless. Nrho is in 1/distance^3 units for 3d simulations and
1/distance^2 units for 2d simulations. Mass is in mass units.
Massrho is in is in mass/distance^3 units for 3d simulations and
mass/distance^2 units for 2d simulations. U, v, and w are in
velocity units. Usq, vsq, and wsq are in velocity squared units.
Ke, erot, and evib are in energy units. Temp and trot and
tvib are in temperature units. Pxrho, pyrho, pzrho are in
momentum/distance^3 units for 3d simulations and momentum/distance^2
units for 2d simulations, where momentum is in units of mass*velocity.
Kerho is in units of energy/distance^3 units for 3d simulations and
energy/distance^2 units for 2d simulations.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

fix ave/grid command,
command-dump grid,
compute thermal/grid command

Default:

none

compute isurf/grid command

Syntax:

compute ID isurf/grid group-ID mix-ID value1 value2 ...

	ID is documented in compute command

	isurf/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	mix-ID = mixture ID for particles to perform calculation on

	one or more values can be appended

	value = n or nwt or mflux or fx or fy or fz or press or
px or py or pz or shx or shy or shz or ke

	n = count of particles hitting surface elements in a grid cell

	nwt = weighted count of particles hitting surface elements in a grid cell

	mflux = flux of mass on surface elements in a grid cell

	fx,fy,fz = components of force on surface elements in a grid cell

	press = magnitude of normal pressure on surface elements in a grid cell

	px,py,pz = components of normal pressure on surface elements in a grid cell

	shx,shy,shz = components of shear stress on surface elements in a grid cell

	ke = flux of particle kinetic energy on surface elements in a grid cell

	erot = flux of particle rotational energy on surface elements in a grid cell

	evib = flux of particle vibrational energy on surface elements in a grid cell

	etot = flux of particle total energy on surface elements in a grid cell

Examples:

compute 1 isurf/grid all all n press eng
compute mine isurf/grid sphere species press shx shy shz

These commands will dump time averages for each species and each grid
cell to a dump file every 1000 steps:

compute 1 isurfgrid all species n press shx shy shz
fix 1 ave/grid all 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

These commands will time-average the force surface elements in each grid
cell, then sum them across grid cells to compute drag (fx) and lift (fy)
on the set of implicit surfs:

compute 1 isurf/grid all all fx fy
fix 1 ave/grid all 10 100 1000 c_1[*]
compute 2 reduce sum f_1[1] f_1[2]
stats 1000
stats_style step cpu np c_2[1] c_2[2]

Description:

Define a computation that calculates one or more values for each grid
cell in a grid cell group, based on the particles that collide with the
implicit surfaces in that grid cell. The values are summed for each
group of species in the specified mixture. See the
mixture command for how a set of species can be
partitioned into groups. Only grid cells in the grid group specified by
group-ID are included in the calculations. See the group grid command for info on how grid cells can be assigned
to grid groups.

Implicit surface elements are triangles for 3d simulations and line
segments for 2d simulations. Unlike explicit surface elements, each
triangle or line segment is wholly contained within a single grid cell.
See the read_isurf command for details.

This command can only be used for simulations with implicit surface
elements. See the similar compute surf command
for use with simulations with explicit surface elements.

Note that when a particle collides with a surface element, it can bounce
off (possibly as a different species), be captured by the surface
(vanish), or a 2nd particle can also be emitted. The formulas below
account for all the possible outcomes. For example, the kinetic energy
flux ke onto a suface element for a single collision includes a
positive contribution from the incoming particle and negative
contributions from 0, 1, or 2 outgoing particles. The exception is the
n and nwt values which simply tally counts of particles colliding
with the surface element.

Also note that all values for a collision are tallied based on the
species group of the incident particle. Quantities associated with
outgoing particles are part of the same tally, even if they are in
different species groups.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as if the
particles striking the surface elements within the grid cell at each
sampling timestep were combined together into one large set to compute
the formulas below. The answer is then divided by the number of sampling
timesteps if it is not otherwise normalized by the number of particles.
Note that in general this is a different normalization than taking the
values produced by the formulas below for a single timestep, summing
them over the sampling timesteps, and then dividing by the number of
sampling steps. However for the current values listed below, the two
normalization methods are the same.

NOTE: If particle weighting is enabled via the global weight command, then all of the values below are scaled
by the weight assigned to the grid cell in which the particle collision
with the surface element occurs. The only exception is the the n
value, which is NOT scaled by the weight; it is a simple count of
particle collisions with surface elements in the grid cell.

The meaning of all the value keywords and the formulas for calculating
these quantities is exactly the same as described by the compute surf command.

The only difference is that the quantities are calculated on a per grid
cell basis, summing over all the surface elements in that grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns
equal to the number of values times the number of groups. The ordering
of columns is first by values, then by groups. I.e. if the n and u
values were specified as keywords, then the first two columns would be
n and u for the first group, the 3rd and 4th columns would be n
and u for the second group, etc.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units
appropriate to the individual values as described above. N is
unitless. Press, px, py, pz, shx, shy, shz are in in
pressure units. Ke, erot, evib, and etot are in energy/area-time
units for 3d simulations and energy/length-time units for 2d
simulations.

Restrictions:

none

Related commands:

fix ave/grid command
dump grid,
compute surf command

Default:

none

compute ke/particle command

compute ke/particle/kk command

Syntax:

compute ID ke/particle

	ID is documented in compute command

	ke/particle = style name of this compute command

Examples:

compute 1 ke/particle

Description:

Define a computation that calculates the per-atom translational kinetic
energy for each particle.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump particle command.

The kinetic energy is

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = 1/2 m Vsq

where m is the mass and (Vx,Vy,Vz) are the velocity components of the particle.

Output info:

This compute calculates a per-particle vector, which can be accessed by any command that uses per-particle values from a compute as input.

The vector can be accessed by any command that uses per-particle values from a compute as input. See Output from SPARTA (stats, dumps, computes, fixes, variables) for an overview of SPARTA output options.

The per-particle vector values will be in energy units.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The accelerated styles take the same arguments and should produce the same results, except for different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA with optional packages section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA performance section of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

none

Related commands:

dump particle

Default:

none

compute lambda/grid command

compute lambda/grid/kk command

Syntax:

compute ID lambda/grid nrho temp species extra

	ID is documented in compute command

	lambda/grid = style name of this compute command

	nrho = compute or fix column for number density, prefaced by c_ or
f_

	temp = NULL or compute or fix column for temperature, prefaced by
c_ or f_

	species = species name used for reference properties

	extra = kall or kx or ky or kz (optional)

kall = also calculate Knudsen number based on cell size in all dimensions
kx = also calculate Knudsen number based on cell size in x dimension
ky = also calculate Knudsen number based on cell size in y dimension
kz = also calculate Knudsen number based on cell size in z dimension

Examples:

compute 1 lambda/grid c_GR[1] NULL Ar
compute 1 lambda/grid f_ave[2] f_ave[3] N2 kall

These commands will dump time averages for the mean free path for each
grid cell to a dump file every 1000 steps:

compute 1 grid species nrho temp
fix 1 ave/grid 10 100 1000 c_1[*]
compute 2 lambda/grid f_1[1] f_1[2] Ar
dump 1 grid all 1000 tmp.grid id c_2

Description:

Define a computation that calculates the mean free path (lambda) between
molecular collisions for each grid cell, based on the particles in that
cell. Optionally, a Knudsen number for each cell can also be calculated,
which is the mean free path divided by the cell size. These quantities
can be useful for estimating the optimal grid cell size when adapting
the grid, e.g. via the adapt_grid or fix adapt/grid commands.

Unlike other computes that calculate per grid cell values, this compute
does not take a “group-ID” for a grid cell group as an argument, nor a
particle mixture ID as an argument. This is because
it uses the number density and temperature calculated by other computes
or fixes as input, and those computes or fixes use grid group IDs or
mixture IDs as part of their computations.

The results of this compute can be used by different commands in
different ways. For example, the values can be output by the dump grid command.

The formula used to calculate the mean free path (lambda) is given in
[Bird94] as equation 4.65:

\[\lambda = \{\sqrt{2} \pi D_{\rm ref}^2 n (T_{\rm ref}/T)^{\omega - 1/2} \}^{-1}\]

This is an approximate mean free path for a multi-species mixture,
suitable for estimating optimal grid cell sizes as explained above. It
is a simplied version of formulas 4.76 and 4.77 from the same reference.

Dref and Tref and omega are collision properties for a reference species
in the flow. The reference species is specified by the species
argument. It must be a species defined by the species
command and listed in the file of per-species collision properties read
in by the collide command.

Specifically, Dref is the diameter of molecules of the species, Tref is
the reference temperature, and omega is the viscosity
temperature-dependence for the species.

In the formula above, n is the number density and T is the thermal
temperature of particles in a grid cell. This compute does not calculate
these quantities itself; instead it uses another compute or fix to
perform the calculation. This is done by specifying the nrho and
temp arguments like this:

	c_ID = compute with ID that calculates nrho/temp as a vector output

	c_ID[m] = compute with ID that calculates nrho/temp as its Mth column
of array output

	f_ID[m] = fix with ID that calculates a time-averaged nrho/temp as a
vector output

	f_ID[m] = fix with ID that calculates a time-averaged nrho/temp as
its Mth column of array output

The temp argument can also be specified as NULL, which drops the
(Tref/T) ratio term from the formula above. That is also effectively the
case if the reference species defines omega = 1/2. In that case, the
temp argument is ignored, whether it is NULL or not.

Note that if the value of n is 0.0 for a grid cell, its mean-free-path
will be set to 1.0e20 (infinite length).

The compute_grid command can calculate a number
density, using its nrho value. It can also calculate a temperature
using its temp value. Note that this temperature is inferred from the
translational kinetic energy of the particles, which is only appopriate
for a mean free path calculation for systems with zero or small
streaming velocities. For systems with streaming flow, an appropriate
temperature can be calculated by the compute thermal/grid command. The formulas on its
doc page show that the the center-of-mass velocity from the particles in
each grid cell is subtracted from each particle’s velocity to yield a
translational thermal velocity, from which a thermal temperature is
calculated.

The fix ave/grid command can calculate the same
values in a time-averaged sense, assuming it uses these same computes as
input. Using this fix as input to this compute will thus yield less
noisy values, due to the time averaging.

Note that the compute or fix (via the compute(s) it uses as input) can
perform its number density or temperature calculation for a subset of
the particles based on the “mixture” it uses. See the
mixture command for how a set of species can be
partitioned into groups.

IMPORTANT NOTE: If the ID of a fix ave/grid
command is used as the nrho or temp argument, it only produces
output on timesteps that are multiples of its Nfreq argument. Thus
this compute can only be invoked on those timesteps. For example, if a
dump grid command invokes this compute to write values
to a dump file, it must do so on timesteps that are multiples of
Nfreq.

One of the kall or kx or ky or kz extra arguments can be
optionally appended. If specified, this calculates an additional value
per grid cell, namely the dimensionless Knudsen number which is the
ratio of the mean free path to the cell size. For kall, the cell size
is taken to be the average of the three grid cell side lengths (or two
cell lengths for a 2d simulation). For kx, ky, or kz, the cell
size is the single cell side length in the corresponding x,y,z
dimension.

Output info:

This compute calculates a per-grid vector or array. If one of kall,
kx, ky, or kz is not specified, then it is a vector. If one extra
argument is specified, it is an array with two columns. The vector or
first column of the array is the mean free path; the second column is
the Knudsen number.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. Note
that cells inside closed surfaces contain no particles. These could be
unsplit or cut cells (if they have zero flow volume). Both of these
kinds of cells will compute a zero result for all the individual values.
Likewise, split cells store no particles and will produce a zero result.
This is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

The vector or array can be accessed by any command that uses per-grid
values from a compute as input. See Section 4.4 for an overview of SPARTA output
options.

The per-grid array values for the vector or first column of the array
will be in distance units. The second column of the
array will be dimensionless.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

To use this compute, a collision style must be defined via the
collide command, which defines properties for the
reference species.

As explained above, to use this compute with nrho or temp defined as
input from a fix ave/grid command, this compute
must only be invoked on timesteps that are multiples of the Nfreq
argument used by the fix, since those are the steps when it produces
output.

Related commands:

compute grid command,
compute thermal/grid command,
fix ave/grid command,
dump grid

Default:

none

compute pflux/grid command

compute pflux/grid/kk command

Syntax:

compute ID pflux/grid group-ID mix-ID value1 value2 ...

	ID is documented in compute command

	pflux/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	mix-ID = mixture ID to perform calculation on

	one or more values can be appended

values = momxx or momyy or momzz or momxy or momyz or
momxz

	momxx,momyy,momzz = diagonal components of momentum flux density tensor

	momxy,momyz,momxz = off-diagonal components of momentum flux density tensor

Examples:

compute 1 pflux/grid all species momxx momyy momzz
compute 1 pflux/grid subset species momxx momxy

These commands will dump time averaged momentum flux densities for
each species and each grid cell to a dump file every 1000 steps:

compute 1 pflux/grid all species momxx momyy momzz
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates components of the momemtum flux
density tensor for each grid cell in a grid cell group. This is
equivalent to the kinetic energy density tensor, and is based on the
thermal velocity of the particles in each grid cell. The values are
tallied separately for each group of species in the specified mixture,
as described in the Output section below. See the mixture command for
how a set of species can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included
in the calculations. See the group grid command for
info on how grid cells can be assigned to grid groups.

The values listed above rely on first computing and subtracting the
center-of-mass (COM) velocity for all particles in the group and grid
cell from each particle to yield a thermal velocity. This thermal
velocity is used to compute the components of the momentum flux density
tensor, as described below. This is in contrast to some of the values
tallied by the compute grid temp command which
simply uses the full velocity of each particle to compute a momentum or
kinetic energy density. For non-streaming simulations, the two results
should be similar, but for streaming flows, they will be different.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as if the
particles in the cell at each sampling timestep were combined together
into one large set of particles to compute the formulas below.

Note that the center-of-mass (COM) velocity that is subtracted from each
particle to yield a thermal velocity for each particle, as described
below, is also computed over one large set of particles (across all
timesteps), in contrast to using a COM velocity computed only for
particles in the current timestep, which is what the compute sonine/grid command does.

Note that this is a different form of averaging than taking the values
produced by the formulas below for a single timestep, summing those
values over the sampling timesteps, and then dividing by the number of
sampling steps.

Calculation of the momentum flux density is done by first calculating the
center-of-mass (COM) velocity of particles for each group within a grid
cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each
particle is (Cx,Cy,Cz), i.e. its velocity minus the COM velocity of
particles in its group and cell.

The momxx, momyy, momzz values compute the diagonal components of
the momentum flux density tensor due to particles in the group as
follows:

momxx = fnum/volume Sum_i (mass_i Cx^2)
momyy = fnum/volume Sum_i (mass_i Cy^2)
momzz = fnum/volume Sum_i (mass_i Cz^2)

The momxy, momyz, momxz values compute the off-diagonal components
of the momentum flux density tensor due to particles in the group as
follows:

momxy = fnum/volume Sum_i (mass_i Cx Cy)
momyz = fnum/volume Sum_i (mass_i Cy Cz)
momxz = fnum/volume Sum_i (mass_i Cx Cz)

Note that if particle weighting is enabled via the global weight command, then the volume used in the formula is
divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns
equal to the number of values times the number of groups. The ordering
of columns is first by values, then by groups. I.e. if momxx and
momxy values were specified as keywords, then the first two columns
would be momxx and momxy for the first group, the 3rd and 4th
columns would be momxx and momxy for the second group, etc.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. Note
that cells inside closed surfaces contain no particles. These could be
unsplit or cut cells (if they have zero flow volume). Both of these
kinds of cells will compute a zero result for all their values.
Likewise, split cells store no particles and will produce a zero result.
This is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units of
momentum flux density = energy density = energy/volume units.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

compute grid command,
compute thermal/grid command,
compute eflux/grid command,
fix ave/grid command,
dump grid

Default:

none

compute property/grid command

compute property/grid/kk command

Syntax:

compute ID property/grid group-ID input1 input2 ...

	ID is documented in compute command

	property/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	input = one or more grid attributes

possible attributes = id, proc, xlo, ylo, zlo, xhi, yhi, zhi, xc, yc, zc

	id = integer form of grid cell ID

	proc = processor that owns grid cell

	xlo,ylo,zlo = coords of lower left corner of grid cell

	xhi,yhi,zhi = coords of lower left corner of grid cell

	xc,yc,zc = coords of center of grid cell

	vol = flow volume of grid cell (area in 2d)

Examples:

compute 1 property/grid all id xc yc zc

Description:

Define a computation that simply stores grid attributes for each grid
cell in a grid cell group. This is useful so that the values can be used
by other output commands that take
computes as inputs. See for example, the compute reduce, fix ave/grid,
and dump grid commands.

Only grid cells in the grid group specified by group-ID are included
in the calculation. See the group grid command for info
on how grid cells can be assigned to grid groups.

The values are stored in a per-grid vector or array as discussed below.

Id is the grid cell ID. In SPARTA each grid cell is assigned a unique
ID which represents its logical location within the
hierarchical grid. This ID is stored as an integer such as 5774983, but
can also be decoded into a string such as 33-4-6, which makes it easier
to understand the grid hierarchy. In this case it means the grid cell is
at the 3rd level of the hierarchy. Its grandparent cell was 33 at the
1st level, its parent was cell 4 (at level 2) within cell 33, and the
cell itself is cell 6 (at level 3) within cell 4 within cell 33. If you
specify id, the ID is printed directly as an integer. The ID in string
format can be accessed by the dump grid command and its
idstr argument.

Proc is the ID of the processor which currently owns the grid cell.

The xlo, ylo, zlo attributes are the coordinates of the lower-left
corner of the grid cell in the appropriate distance
units. The xhi, yhi, zhi are the coordinates of
the upper-right corner of the grid cell. The xc, yc, zc attributes
are the coordinates of the center point of the grid cell. The zlo,
zhi, zc attributes cannot be used for a 2d simulation.

The vol attribute is the flow volume of the grid cell (or area in 2d).
Flow volume is the portion of the grid cell that is accessible to
particles, i.e. outside any closed surface that may intersect the cell.

Output info:

This compute calculates a per-grid vector or per-grid array depending on
the number of input values. If a single input is specified, a per-grid
vector is produced. If two or more inputs are specified, a per-grid
array is produced where the number of columns = the number of inputs.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. The
id and xlo,ylo,zlo and xhi,yhi,zhi values for a split cell and its
sub cells are all the same. The vol of a cut cell is the portion of
the cell in the flow. The vol of a split cell is the same as if it
were unsplit. The vol of each sub cell within a split cell is its
portion of the flow volume.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The vector or array can be accessed by any command that uses per-atom
values from a compute as input. See Section 4.4 for an overview of SPARTA output
options.

The vector or array values will be in whatever units
the corresponding attribute is in, e.g. distance units for xlo or xc.

Styles with a kk suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in the
Accelerating SPARTA section of the manual.
The accelerated styles take the same arguments and should produce the
same results, except for different random number, round-off and
precision issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you can
use the suffix command in your input script.

See the Accelerating SPARTA performance section of the manual for more instructions on
how to use the accelerated styles effectively.

Restrictions:

none

Related commands:

dump grid
compute reduce command
fix ave/grid command

Default:

none

compute react/boundary command

Syntax:

compute ID react/boundary reaction-ID value1 value2 ...

	ID is documented in compute command

	react/boundary = style name of this compute command

	reaction-ID = surface reaction ID which defines surface reactions

	zero or more values can be appended

	value = r:s1/s2/s3 … or p:s1/s2/s3 …

	r: or p: = list of reactant species or product species

	s1,s2,s3 = one or more species IDs, separated by “/” character

Examples:

surf_react air prob air.surf
compute 1 react/boundary air
compute 2 react/boundary air r:N/O/N2/O2 p:N/O/NO

These commands will time average the reaction tallies for each face and
output the results as part of statistical output:

compute 2 react/boundary air r:N/O/N2/O2 p:N/O/NO

fix 1 ave/time all 10 100 1000 c_2[*]
stats_style step np f_1[1][*] f_1[2][*] f_1[3][*] f_1[4][*]

Description:

Define a computation that tallies counts of reactions for each boundary
(i.e. face) of the simulation box, based on the particles that collide
with the boundary. Only faces assigned to the surface reaction model
specified by reaction-ID are included in the tallying.

Note that when a particle collides with a face, it can bounce off
(possibly as a different species), be captured by the surface (vanish),
or a 2nd particle can also be emitted.

The doc page for the surf_react command explains
the different reactions that can occur for each specified style.

If no values are specified each reaction specified by the
surf_react style is tallied individually for each
boundary.

If M values are specified, then M tallies are made for each face, one
per value. If the value starts with “r:” then any reaction which occurs
with one (or more) of the listed species as a reactant is counted as
part of that tally. If the value starts with “p:” then any reaction
which occurs with one (or more) of the listed species as a product is
counted as part of that tally. Note that these rules mean that a single
reaction may be tallied multiple times depending on which values it
matches.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
stats_style command. The values over many
sampling timesteps can be averaged by the fix ave/time command.

Output info:

This compute calculates a global array, with the number of columns
either equal to the number of reactions defined by the
surf_react style (if no values are specified) or equal
to M = the # of values specified. The number of rows is 4 for a 2d
simulation for the 4 faces (xlo, xhi, ylo, yhi), and it is 6 for a 3d
simulation (xlo, xhi, ylo, yhi, zlo, zhi).

The array can be accessed by any command that uses global array values
from a compute as input. See Section 6.4 for an overview of SPARTA output
options.

The array values are counts of the number of reactions that occurred on
each face.

Restrictions:

none

Related commands:

fix ave/time command,
compute react/surf command

Default:

none

compute react/isurf/grid command

Syntax:

compute ID react/isurf/grid group-ID reaction-ID value1 value2 ...

	ID is documented in compute command

	react/isurf/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	reaction-ID = surface reaction ID which defines surface reactions

	zero or more values can be appended

	value = r:s1/s2/s3 … or p:s1/s2/s3 …

	r: or p: = list of reactant species or product species

	s1,s2,s3 = one or more species IDs, separated by “/” character

Examples:

surf_react air prob air.surf
compute 1 react/isurf/grid all air
compute 2 react/isurf/grid all air r:N/O/N2/O2 p:N/O/NO

These commands will dump time averages for each surface element to a
dump file every 1000 steps:

compute 2 react/isurf/grid all air r:N/O/N2/O2 p:N/O/NO
fix 1 ave/grid all 10 100 1000 c_2[*]
dump 1 grid all 1000 tmp.surgrid id f_1[*]

Description:

Define a computation that tallies counts of reactions for each grid cell
containing implicit surface elements in a grid group, based on the
particles that collide with those elements. Only grid cells elements in
the grid group specified by group-ID are included in the tallying. See
the group grid command for info on how grid cells can
be assigned to grid groups. Likewise only grid cells with surface
elements assigned to the surface reaction model specified by
reaction-ID are included in the tallying.

Implicit surface elements are triangles for 3d simulations and line
segments for 2d simulations. Unlike explicit surface elements, each
triangle or line segment is wholly contained within a single grid cell.
See the read_isurf command for details.

This command can only be used for simulations with implicit surface
elements. See the similar compute react/surf command for use with simulations
with explicit surface elements.

Note that when a particle collides with a surface element, it can bounce
off (possibly as a different species), be captured by the surface
(vanish), or a 2nd particle can also be emitted.

The doc page for the surf_react command explains
the different reactions that can occur for each specified style.

If no values are specified each reaction specified by the
surf_react style is tallied individually for each
grid cell.

If M values are specified, then M tallies are made for each grid cell,
one per value. If the value starts with “r:” then any reaction which
occurs with one (or more) of the listed species as a reactant is counted
as part of that tally. If the value starts with “p:” then any reaction
which occurs with one (or more) of the listed species as a product is
counted as part of that tally. Note that these rules mean that a single
reaction may be tallied multiple times depending on which values it
matches.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command.

Output info:

This compute calculates a per-grid array, with the number of columns
either equal to the number of reactions defined by the
surf_react style (if no values are specified) or equal
to M = the # of values specified.

Grid cells not in the specified group-ID or whose implicit surfaces
are not assigned to the specified reaction-ID will output zeroes for
all their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values are counts of the number of reactions that
occurred on surface elements in that grid cell.

Restrictions:

none

Related commands:

fix ave/grid command
dump grid,
compute react/surf command

Default:

none

compute react/surf command

Syntax:

compute ID react/surf group-ID reaction-ID value1 value2 ...

	ID is documented in compute command

	react/surf = style name of this compute command

	group-ID = group ID for which surface elements to perform calculation
on

	reaction-ID = surface reaction ID which defines surface reactions

	zero or more values can be appended

	value = r:s1/s2/s3 … or p:s1/s2/s3 …

	r: or p: = list of reactant species or product species

	s1,s2,s3 = one or more species IDs, separated by “/” character

Examples:

surf_react air prob air.surf
compute 1 react/surf all air
compute 2 react/surf all air r:N/O/N2/O2 p:N/O/NO

These commands will dump time averages for each surface element to a
dump file every 1000 steps:

compute 2 react/surf all air r:N/O/N2/O2 p:N/O/NO
fix 1 ave/surf all 10 100 1000 c_2[*]
dump 1 surf all 1000 tmp.surf id f_1[*]

Description:

Define a computation that tallies counts of reactions for each explicit surface element in a surface element group, based on the particles that collide with that element. Only surface elements in the surface group specified by group-ID are included in the tallying. See the group surf for info on how surface elements can be assigned to surface groups. Likewise only surface elements assigned to the surface reaction model specified by reaction-ID are included in the tallying.

Explicit surface elements are triangles for 3d simulations and line segments for 2d simulations. Unlike implicit surface elements, each explicit triangle or line segment may span multiple grid cells. See the read_surf command for details.

This command can only be used for simulations with explicit surface elements. See the similar compute react/isurf/grid for use with simulations with implicit surface elements.

Note that when a particle collides with a surface element, it can bounce off (possibly as a different species), be captured by the surface (vanish), or a 2nd particle can also be emitted.

The doc page for the surf_react command explains the different reactions that can occur for each specified style.

If no values are specified each reaction specified by the surf_react style is tallied individually for each surface element.

If M values are specified, then M tallies are made for each surface element, one per value. If the value starts with “r:” then any reaction which occurs with one (or more) of the listed species as a reactant is counted as part of that tally. If the value starts with “p:” then any reaction which occurs with one (or more) of the listed species as a product is counted as part of that tally. Note that these rules mean that a single reaction may be tallied multiple times depending on which values it matches.

The results of this compute can be used by different commands in different ways. The values for a single timestep can be output by the dump surf command.

The values over many sampling timesteps can be averaged by the fix ave/surf command.

Output info:

This compute calculates a per-surf array, with the number of columns either equal to the number of reactions defined by the surf_react style (if no values are specified) or equal to M = the # of values specified.

Surface elements not in the specified group-ID or not assigned to the specified reaction-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-surf values from a compute as input. See Output from SPARTA (stats, dumps, computes, fixes, variables) for an overview of SPARTA output options.

The per-surf array values are counts of the number of reactions that
occurred.

Restrictions:

none

Related commands:

fix ave/surf command,
dump surf,
compute react/isurf/grid

Default:

none

compute reduce command

Syntax:

compute ID reduce mode input1 input2 ... keyword args ...

	ID is documented in compute command

	reduce = style name of this compute command

	mode = sum or min or max or ave or sumsq or avesq

	one or more inputs can be listed

	input = x, y, z, vx, vy, vz, ke, erot, evib, c_ID, c_ID[N], f_ID,
f_ID[N], v_name

	x,y,z,vx,vy,vz = particle position or velocity component

	ke,erot,evib = particle energy component

	c_ID = per-particle or per-grid vector calculated by a compute with ID

	c_ID[I] = Ith column of per-particle or per-grid array calculated by a compute with ID, I can include wildcard (see below)

	f_ID = per-particle or per-grid or per-surf vector calculated by a fix with ID

	f_ID[I] = Ith column of per-particle or per-grid or per-surf array calculated by a fix with ID, I can include wildcard (see below)

	v_name = per-particle or per-grid vector calculated by a particle-style or grid-style variable with name

	zero or more keyword/args pairs may be appended

keyword = replace

	replace args = vec1 vec2

	vec1 = reduced value from this input vector will be replaced

	vec2 = replace it with vec1[N] where N is index of max/min value from vec2

Examples:

compute 1 reduce sum c_grid[*]
compute 2 reduce min f_ave v_myKE
compute 3 reduce max c_mine[1] c_mine[2] c_temp replace 1 3 replace 2 3

These commands will include the average grid cell temperature, across
all grid cells, in the stats output:

compute 1 temp
compute 2 grid all all temp
compute 3 reduce ave c_2[1]
stats_style step c_temp c_3

Description:

Define a calculation that “reduces” one or more vector inputs into
scalar values, one per listed input. The inputs can be per-particle or
per-grid or per-surf quantities; they cannot be global quantities.
Particle attributes are per-particle quantities,
computes may generate per-particle or per-grid
quantities, fixes may generate any of the three kinds of
quantities, and particle-style or grid-style variables generate per-particle or per-grid
quantities. See the variable command and its special
functions which can perform the same operations as the compute reduce
command on global vectors.

The reduction operation is specified by the mode setting. The sum
option adds the values in the vector into a global total. The min or
max options find the minimum or maximum value across all vector
values. The ave setting adds the vector values into a global total,
then divides by the number of values in the vector. The sumsq option
sums the square of the values in the vector into a global total. The
avesq setting does the same as sumsq, then divdes the sum of squares
by the number of values. The last two options can be useful for
calculating the variance of some quantity, e.g. variance = sumsq -
ave^2.

Each listed input is operated on independently.

Each listed input can be a particle attribute or can be the result of a
compute or fix or the evaluation of a
variable.

Note that for values from a compute or fix, the bracketed index I can be
specified using a wildcard asterisk with the index to effectively
specify multiple values. This takes the form “*” or “n” or “n” or
“m*n”. If N = the size of the vector (for mode = scalar) or the number
of columns in the array (for mode = vector), then an asterisk with no
numeric values means all indices from 1 to N. A leading asterisk means
all indices from 1 to n (inclusive). A trailing asterisk means all
indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual columns of the array
had been listed one by one. E.g. these 2 compute reduce commands are
equivalent, since the compute grid command
creates a per-grid array with 3 columns:

compute myGrid grid all all u v w
compute 2 all reduce min c_myGrid[*]
compute 2 all reduce min c_myGrid[1] c_myGrid[2] c_myGrid[3]

The particle attributes x,y,z,vx,vy,vz are position and velocity
components. The ke,erot,evib attributes are for kinetic, rotational, and
vibrational energy of particles.

If a value begins with c_, a compute ID must follow which has been
previously defined in the input script. Computes can generate
per-particle or per-grid quantities. See the individual
compute doc page for details. If no bracketed integer
is appended, the vector calculated by the compute is used. If a
bracketed integer is appended, the Ith column of the array calculated by
the compute is used. Users can also write code for their own compute
styles and add them to SPARTA. See the
discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

Important

A compute which generates per-surf quantities cannot be used as input. This is because its values have not yet been combined across processors to sum the contributions from all processors whose particles collide with the same surface element. The combining is performed by the fix ave/surf command, at each of its Nfreq timesteps. Thus to use this compute on per-surf values, specify a fix ID for a fix ave/surf and insure the fix outputs its values when they are needed.

If a value begins with f_, a fix ID must follow which has been
previously defined in the input script. Fixes can generate per-particle
or per-grid or per-surf quantities. See the individual
fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with
when this compute references the values, else an error results. If no
bracketed integer is appended, the vector calculated by the fix is used.
If a bracketed integer is appended, the Ith column of the array
calculated by the fix is used. Users can also write code for their own
fix style and add them to SPARTA. See the
discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

If a value begins with v_, a variable name must follow which has been
previously defined in the input script. It must be a particle-style or grid-style variable. Both styles define formulas
which can reference stats keywords or invoke other computes, fixes, or
variables when they are evaluated. Particle-style variables can also
reference various per-particle attributes (position, velocity, etc). So
these variables are a very general means of creating per-particle or
per-grid quantities to reduce.

If the replace keyword is used, two indices vec1 and vec2 are
specified, where each index ranges from 1 to the # of input values. The
replace keyword can only be used if the mode is min or max. It
works as follows. A min/max is computed as usual on the vec2 input
vector. The index N of that value within vec2 is also stored. Then,
instead of performing a min/max on the vec1 input vector, the stored
index is used to select the Nth element of the vec1 vector.

Here is an example which prints out both the grid cell ID and number of
particles for the grid cell with the maximum number of particles:

compute 1 property/grid id
compute 2 grid all n
compute 3 reduce max c_1 c_2[1] replace 1 2
stats_style step c_temp c_3[1] c_3[2]

The first two input values in the compute reduce command are vectors
with the ID and particle count of each grid cell. Instead of taking the
max of the ID vector, which does not yield useful information in this
context, the replace keyword will extract the ID for the grid cell
which has the maximum number of particles. This ID and the cell’s
particle count will be printed with the statistical output.

If a single input is specified this compute produces a global scalar
value. If multiple inputs are specified, this compute produces a global
vector of values, the length of which is equal to the number of inputs
specified.

Output info:

This compute calculates a global scalar if a single input value is
specified or a global vector of length N where N is the number of
inputs, and which can be accessed by indices 1 to N. These values can be
used by any command that uses global scalar or vector values from a
compute as input. See Section 6.4 for
an overview of SPARTA output options.

The scalar or vector values will be in whatever units
the quantities being reduced are in.

Restrictions:

none

Related commands:

compute command,
fix command,
variable command

Default:

none

compute sonine/grid command

compute sonine/grid/kk command

Syntax:

compute ID sonine/grid group-ID mix-ID keyword values ...

	ID is documented in compute command

	sonine/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	mix-ID = mixture ID to perform calculation on

	one or more keywords may be appended, multiple times

	keyword = a or b

	values = values for specific keyword

a args = dim order = sonine A moment
 dim = x or y or z
 order = number from 1 to 5
b args = dim2 order = sonine B moment
 dim2 = xx or yy or zz or xy or yz or xz
 order = number from 1 to 5

Examples:

compute 1 sonine/grid all air a x 5 b xy 5
compute 1 sonine/grid subset air a x 5

These commands will dump time averaged sonine moments for each
species and each grid cell to a dump file every 1000 steps:

compute 1 sonine/grid all species a x 5 b xy 5
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates the sonine moments of the velocity
distribution of the particles in each grid cell in a grid cell group.
The values are tallied separately for each group of species in the
specified mixture, as described in the Output section below. See the
mixture command for how a set of species can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included
in the calculations. See the group grid command for
info on how grid cells can be assigned to grid groups.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as if the
particles in the cell at each sampling timestep were combined together
into one large set of particles to compute the A,B formulas below.

Note however that the center-of-mass (COM) velocity that is subtracted
from each particle to yield a squared thermal velocity Csq for each
particle, as described below, is the COM velocity for only the particles
in the current timestep. When time-averaging it is NOT the COM velocity
for all particles across all timesteps.

Note that this is a different form of averaging than taking the values
produced by the formulas below for a single timestep, summing those
values over the sampling timesteps, and then dividing by the number of
sampling steps.

Calculation of both the A and B sonine moments is done by first
calcuating the center-of-mass (COM) velocity of particles for each group
within a grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each
particle is (Cx,Cy,Cz), i.e. its velocity minus the COM velocity of
particles in its group and cell. This allows computation of Csq for each
particle which is used in the formulas below to calculate the sonine
moments.

The a keyword calculates the average of one or more sonine A moments
for all particles in each group:

A1 = Sum_i (mass_i * Vdim * pow(Csq,1)) / Sum_i (mass_i)
A2 = Sum_i (mass_i * Vdim * pow(Csq,2)) / Sum_i (mass_i)
A3 = Sum_i (mass_i * Vdim * pow(Csq,3)) / Sum_i (mass_i)
A4 = Sum_i (mass_i * Vdim * pow(Csq,4)) / Sum_i (mass_i)
A5 = Sum_i (mass_i * Vdim * pow(Csq,5)) / Sum_i (mass_i)

Vdim is Vx or Vy or Vz as specified by the dim value. Csq is the
squared thermal velocity of the particle, as in the COM equations above.
The number of moments computed is specified by the order value, e.g.
for order = 3, the first 3 moments are computed, which leads to 3
columns of output as explained below.

The b keyword calculates the average of one or more sonine B moments
for all particles in each group:

B1 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,1)) / Sum_i (mass_i)
B2 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,2)) / Sum_i (mass_i)
B3 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,3)) / Sum_i (mass_i)
B4 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,4)) / Sum_i (mass_i)
B5 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,5)) / Sum_i (mass_i)

Vdim is Vx or Vy or Vz as specified by the dim value. Csq is the
squared thermal velocity of the particle, as in the COM equations above.
The number of moments computed is specified by the order value, e.g.
for order = 2, the first 2 moments are computed, which leads to 2
columns of output as explained below.

Output info:

This compute calculates a per-grid array, with the number of columns
equal to the number of values times the number of groups. The ordering
of columns is first by values, then by groups. I.e. if the a z 3 and
b xy 2 moments were specified as keywords, then the 1st thru 3rd
columns would be the A1, A2, A3 moments of the first group, the 4th and
5th columns would be the B1 and B2 moments of the first group, the 6th
thru 8th columns would be the A1, A2, A3 moments of the 2nd group, etc.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. Note
that cells inside closed surfaces contain no particles. These could be
unsplit or cut cells (if they have zero flow volume). Both of these
kinds of cells will compute a zero result for all their values.
Likewise, split cells store no particles and will produce a zero result.
This is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

Grid cells not in the specified group-ID will have zeroes for all
their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units
appropriate to the individual values as described above. These are units
like velocity cubed or velocity to the 6th power.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

fix ave/grid command,
dump grid

Default:

none

compute surf command

compute surf/kk command

Syntax:

compute ID surf group-ID mix-ID value1 value2 ...

	ID is documented in compute command

	surf = style name of this compute command

	group-ID = group ID for which surface elements to perform calculation on

	mix-ID = mixture ID for particles to perform calculation on

one or more values can be appended

	value = n or nwt or mflux or fx or fy or fz or press or
px or py or pz or shx or shy or shz or ke

	n = count of particles hitting surface element

	nwt = weighted count of particles hitting surface element

	mflux = flux of mass on surface element

	fx,fy,fz = components of force on surface element

	press = magnitude of normal pressure on surface element

	px,py,pz = components of normal pressure on surface element

	shx,shy,shz = components of shear stress on surface element

	ke = flux of particle kinetic energy on surface element

	erot = flux of particle rotational energy on surface element

	evib = flux of particle vibrational energy on surface element

	etot = flux of particle total energy on surface element

Examples:

compute 1 surf all all n press eng
compute mine surf sphere species press shx shy shz

These commands will dump time averages for each species and each surface
element to a dump file every 1000 steps:

compute 1 surf all species n press shx shy shz
fix 1 ave/surf all 10 100 1000 c_1[*]
dump 1 surf all 1000 tmp.surf id f_1[*]

These commands will time-average the force on each surface element then
sum them across element to compute drag (fx) and lift (fy) on the body:

compute 1 surf all all fx fy
fix 1 ave/surf all 10 100 1000 c_1[*]
compute 2 reduce sum f_1[1] f_1[2]
stats 1000
stats_style step cpu np c_2[1] c_2[2]

Description:

Define a computation that calculates one or more values for each
explicit surface element in a surface element group, based on the
particles that collide with that element. The values are summed for each
group of species in the specified mixture. See the
mixture command for how a set of species can be
partitioned into groups. Only surface elements in the surface group
specified by group-ID are included in the calculations. See the group surf command for info on how surface elements can be
assigned to surface groups.

Explicit surface elements are triangles for 3d simulations and line
segments for 2d simulations. Unlike implicit surface elements, each
explicit triangle or line segment may span multiple grid cells. See the
read_surf command for details.

This command can only be used for simulations with explicit surface
elements. See the similar compute isurf/grid command for use with simulations
with implicit surface elements.

Note that when a particle collides with a surface element, it can bounce
off (possibly as a different species), be captured by the surface
(vanish), or a 2nd particle can also be emitted. The formulas below
account for all the possible outcomes. For example, the kinetic energy
flux ke onto a suface element for a single collision includes a
positive contribution from the incoming particle and negative
contributions from 0, 1, or 2 outgoing particles. The exception is the
n and nwt values which simply tally counts of particles colliding
with the surface element.

If the surface element is transparent, the particle will pass through
the surface unaltered. The flux of particle count, mass, or energy to
the surface can still be tallied by this compute. See details on
transparent surface elements below.

Also note that all values for a collision are tallied based on the
species group of the incident particle. Quantities associated with
outgoing particles are part of the same tally, even if they are in
different species groups.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump surf command.

The values over many sampling timesteps can be averaged by the fix ave/surf command. It does its averaging as if the
particles striking the surface element at each sampling timestep were
combined together into one large set to compute the formulas below. The
answer is then divided by the number of sampling timesteps if it is not
otherwise normalized by the number of particles. Note that in general
this is a different normalization than taking the values produced by the
formulas below for a single timestep, summing them over the sampling
timesteps, and then dividing by the number of sampling steps. However
for the current values listed below, the two normalization methods are
the same.

Note

If particle weighting is enabled via the global weight command, then all of the values below are scaled by the weight assigned to the grid cell in which the particle collision with the surface element occurs. The only exception is the the n value, which is NOT scaled by the weight; it is a simple count of particle collisions with the surface element.

	The n value

	counts the number of particles in the group striking the surface element.

	The nwt value

	counts the number of particles in the group striking the surface element and weights the count by the weight assigned to the grid cell in which the particle collision with the surface element occurs. The nwt quantity will only be different than n if particle weighting is enabled via the global weight command.

	The mflux value

	calculates the mass flux imparted to the surface element by particles in the group. This is computed as

Mflux = Sum_i (mass_i) / (A * dt / fnum)

where the sum is over all contributing particle masses, normalized by A = the area of the surface element, dt = the timestep, and fnum = the real/simulated particle ratio set by the global fnum command.

	The fx, fy, fz values

	calculate the components of force extered on the surface element by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
Px = - Sum_i (p_delta_x) / (dt / fnum)
Py = - Sum_i (p_delta_y) / (dt / fnum)
Pz = - Sum_i (p_delta_z) / (dt / fnum)

where p_delta is the change in momentum of a particle, whose velocity changes from V_pre to V_post when colliding with the surface element. The force exerted on the surface element is the sum over all contributing p_delta, normalized by dt and fnum as defined before.

	The press value

	calculates the pressure P exerted on the surface element in the normal direction by particles in the group, such that outward pressure is positive. This is computed as

p_delta = mass * (V_post - V_pre)
P = Sum_i (p_delta_i dot N) / (A * dt / fnum)

where p_delta, V_pre, V_post, dt, fnum are defined as before. The pressure exerted on the surface element is the sum over all contributing p_delta dotted into the outward normal N of the surface element, also normalized by A = the area of the surface element.

	The px, py, pz values

	calculate the normal pressure Px, Py, Pz extered on the surface element in the direction of its normal by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
p_delta_n = (p_delta dot N) N
Px = - Sum_i (p_delta_n_x) / (A * dt / fnum)
Py = - Sum_i (p_delta_n_y) / (A * dt / fnum)
Pz = - Sum_i (p_delta_n_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, and dt are defined as before.
P_delta_n is the normal component of the change in momentum vector p_delta of a particle. P_delta_n_x (and y,z) are its x, y, z components.

	The shx, shy, shz values

	calculate the shear pressure Sx, Sy, Sz extered on the surface element in the tangential direction to its normal by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
p_delta_t = p_delta - (p_delta dot N) N
Sx = - Sum_i (p_delta_t_x) / (A * dt / fnum)
Sy = - Sum_i (p_delta_t_y) / (A * dt / fnum)
Sz = - Sum_i (p_delta_t_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, and dt are defined as before.
P_delta_t is the tangential component of the change in momentum vector p_delta of a particle. P_delta_t_x (and y,z) are its x, y, z components.

	The ke value

	calculates the kinetic energy flux Eflux imparted to the surface element by particles in the group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = 1/2 mass (V_post^2 - V_pre^2)
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the kinetic energy change in a particle, whose velocity changes from V_pre to V_post when colliding with the surface element. The energy flux imparted to the surface element is the sum over all contributing e_delta, normalized by A = the area of the surface element and dt = the timestep and fnum = the real/simulated particle ratio set by the global fnum command.

	The erot value

	calculates the rotational energy flux Eflux imparted to the surface element by particles in the group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = Erot_post - Erot_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the rotational energy change in a particle, whose internal rotational energy changes from Erot_pre to Erot_post when colliding with the surface element. The flux equation is the same as for the ke value.

	The evib value

	calculates the vibrational energy flux Eflux imparted to the surface element by particles in the group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = Evib_post - Evib_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the vibrational energy change in a particle, whose internal vibrational energy changes from Evib_pre to Evib_post when colliding with the surface element. The flux equation is the same as for the ke value.

	The etot value

	calculates the total energy flux imparted to the surface element by particles in the group, such that energy lost by a particle is a positive flux. This is simply the sum of kinetic, rotational, and vibrational energies. Thus the total energy flux is the sum of what is computed by the ke, erot, and evib values.

Transparent surface elements:

This compute will tally information on particles that pass through transparent surface elements. The section Transparent surface elements in How-to discussions page provides an overview of transparent surfaces and how to create them.

The n and nwt value are calculated the same for transparent surfaces. I.e. they are the count and weighted count of particles passing through the surface.

The mflux, ke, erot. evib, and etot values are fluxes.
For transparent surfaces, they are calculated for the incident particle as if they had struck the surface. The outgoing particle is ignored. This means the tally quantity is the flux of particles onto the outward face of the surface. No tallying is done for particles hitting the inward face of the surface. See Section 6.15 for how to do tallying in both directions.

All the other values are calculated as described above. This means they will be zero, since the incident particle and outgoing particle have the same mass and velocity.

Output info:

This compute calculates a per-surf array, with the number of columns
equal to the number of values times the number of groups. The ordering
of columns is first by values, then by groups. I.e. if the n and u
values were specified as keywords, then the first two columns would be
n and u for the first group, the 3rd and 4th columns would be n
and u for the second group, etc.

Surface elements not in the specified group-ID will output zeroes for
all their values.

The array can be accessed by any command that uses per-surf values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-surf array values will be in the units
appropriate to the individual values as described above. N is
unitless. Press, px, py, pz, shx, shy, shz are in in
pressure units. Ke, erot, evib, and etot are in energy/area-time
units for 3d simulations and energy/length-time units for 2d
simulations.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

fix ave/surf command,
dump surf,
compute isurf/grid command

Default:

none

compute temp command

compute temp/kk command

Syntax:

compute ID temp

	ID is documented in compute command

	temp = style name of this compute command

Examples:

compute 1 temp
compute myTemp temp

Description:

Define a computation that calculates the temperature of all particles.

The temperature is calculated by the formula KE = dim/2 N kB T, where KE
= total kinetic energy of the particles (sum of 1/2 m v^2), dim =
dimensionality of the simulation, N = number of particles, kB =
Boltzmann constant, and T = temperature.

Note

This definition of temperature does not subtract out a net
streaming velocity for particles, so it is not a thermal temperature
when the particles have a non-zero streaming velocity. See the compute thermal/grid command for calculation of
thermal temperatures on a per grid cell basis.

Output info:

This compute calculates a global scalar (the temperature). This value
can be used by any command that uses global scalar values from a compute
as input. See Section 6.4 for an
overview of SPARTA output options.

The scalar value will be in temperature units.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

none

Default:

none

compute thermal/grid command

compute thermal/grid/kk command

Syntax:

compute ID thermal/grid group-ID mix-ID value1 value2 ...

	ID is documented in compute command

	thermal/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	mix-ID = mixture ID to perform calculation on

	one or more values can be appended

	value = temp or press

temp = temperature
press = pressure

Examples:

compute 1 thermal/grid all species temp
compute 1 thermal/grid subset air temp press

These commands will dump time averaged thermal temperatures for each
species and each grid cell to a dump file every 1000 steps:

compute 1 thermal/grid all species temp
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates one or more values for each grid
cell in a grid cell group, which are based on the thermal temperature of
the particles in each grid cell. The values are tallied separately for
each group of species in the specified mixture, as described in the
Output section below. See the mixture command for how a set of species
can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included
in the calculation. See the group grid command for info
on how grid cells can be assigned to grid groups.

The values listed above rely on first computing a thermal temperature
which subtracts the center-of-mass (COM) velocity for all particles in
the group and grid cell from each particle to yield a thermal velocity.
This thermal velocity is used to compute the temperature, as described
below. This is in contrast to some of the values tallied by the compute grid temp command which simply uses the full
velocity of each particle to compute a temperature. For non-streaming
simulations, the two results should be similar, but for streaming flows,
they will be different.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as if the
particles in the cell at each sampling timestep were combined together
into one large set of particles to compute the formulas below.

Note that this is a different form of averaging than taking the values
produced by the formulas below for a single timestep, summing those
values over the sampling timesteps, and then dividing by the number of
sampling steps.

Also note that the center-of-mass (COM) velocity that is subtracted from
each particle to yield a squared thermal velocity Csq for each particle,
as described below, is also computed over one large set of particles
(across all timesteps). This is in contrast to using a COM velocity
computed only for particles in the current timestep, which is what the
compute sonine/grid command does.

Calculation of the thermal temperature is done by first calcuating the
center-of-mass (COM) velocity of particles for each group within a grid
cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each
particle is (Cx,Cy,Cz), i.e. its velocity minus the COM velocity of
particles in its group and cell. This allows computation of Csq for each
particle which is used to calculate the total kinetic energy due to
particles in the group as follows:

thermal_KE = Sum_i (1/2 mass_i Csq_i)

The temp value computes the thermal temperature T, due to particles in
each group:

T = thermal_KE / (3/2 N kB)

The press value uses the thermal_KE to compute a pressure P for the
grid cell due to particles in the group:

P = 2/3 fnum/volume * thermal_KE

Note that if multiple groups are defined in the mixture, one group’s
value is effectively a partial pressure due to particles in the group.
When accumulated over multiple sampling steps, this value is normalized
by the number of sampling steps. Note that if particle weighting is
enabled via the global weight command, then the volume
used in the formula is divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns
equal to the number of values times the number of groups. The ordering
of columns is first by values, then by groups. I.e. if the temp and
press values were specified as keywords, then the first two columns
would be temp and press for the first group, the 3rd and 4th columns
would be temp and press for the second group, etc.

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 6.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. Note
that cells inside closed surfaces contain no particles. These could be
unsplit or cut cells (if they have zero flow volume). Both of these
kinds of cells will compute a zero result for all their values.
Likewise, split cells store no particles and will produce a zero result.
This is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units
appropriate to the individual values as described above. Temp is in
temperature units. Press is in prsesure units.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

compute grid command
fix ave/grid command
dump grid

Default:

none

compute tvib/grid command

Syntax:

compute ID tvib/grid group-ID mix-ID keyword ...

	ID is documented in compute command

	tvib/grid = style name of this compute command

	group-ID = group ID for which grid cells to perform calculation on

	mix-ID = mixture ID to perform calculation on

	zero or more keywords can follow

possible keywords = mode
mode = output one temperature per vibrational mode

Examples:

compute 1 tvib/grid all species
compute 1 tvib/grid subset all
compute 1 tvib/grid all species mode

Description:

Define a computation that calculates the vibrational temperature for
each grid cell in a grid cell group, based on the particles in the cell.
How the vibrational temperature is computed is explained below. The
temperature is calculated separately for each group of species in the
specified mixture, as described in the Output section below. See the
mixture command for how a set of species can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included
in the calculations. See the group grid command for
info on how grid cells can be assigned to grid groups.

The results of this compute can be used by different commands in
different ways. The values for a single timestep can be output by the
dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as if the
particles in the cell at each sampling timestep were combined together
into one large set to compute the formulas below. Note that this is a
different normalization than taking the values produced by the formulas
below for a single timestep, summing them over the sampling timesteps,
and then dividing by the number of sampling steps.

If the mode keyword is specified, then temperatures for each
vibrational mode of each polyatomic species are calculated and output as
explained below. To use this option, the collide_modify vibrate discrete option must be set, and the “fix
vibmode” command must be used to store info about individual vibrational
modes with each particle.

The vibrational temperature in a grid cell for a group of particles
comprised of different species and (optionally) different vibrational
modes is defined as a weighted average as follows:

T_group = (T1*N1 + T2*N2 + ...) / (N1 + N2 + ...)

What is summed over in the numerator and denominator depends on several
settings.

If the collide_modify vibrate setting is no,
then no vibrational energy is assigned to particles. All the output
temperatures will be 0.0.

If the collide_modify vibrate setting is
smooth, then the sums in the numerator and denominator are over the
different species in the group. T1, T2, … are the vibrational
temperatures of each species. N1, N2, … are the counts of particles of
each species.

The vibrational temperature Tsp for particles of a single species is
defined as follows:

Ibar = Sum_i (e_vib_i) / (N kB Theta)
Tsp = Theta / ln(1 + 1/Ibar))

where e_vib is the continuous (smooth) vibrational energy of a single
particle I, N is the total # of particles of that species, and kB is
the Boltzmann factor. Theta is the characteristic vibrational
temperature for the species, as defined in the file read by the
species command.

If the collide_modify vibrate setting is
discrete, but no species has a vibrational DOF setting that implies
multiple vibrational modes (vibdof = 4,6,8), then the calulation of
vibrational temeperatures is the same as for collide_modify vibrate smooth. See the species
command and its description of the per-species “vibdof” setting in the
species file.

If the collide_modify vibrate setting is
discrete, and one or more species have vibrational DOF settings that
imply multiple vibrational modes (vibdof = 4,6,8), as defined by the
species command, then the sums in the numerator and
denominator are over the different species in the group and the modes
for each species. For example if species CO2 has vibdof=6, then it has 3
modes. Three terms in the numerator and demoninator are included when
CO2 is a species in the group.

The vibrational temperature Tsp_m for particles of a single species and
single mode M is defined as follows:

Ibar_m = Sum_i (level_im) / (N)
Tsp_m = Theta_m / ln(1 + 1/Ibar_m))

where level_im is the integer level for mode M of a single particle I,
and N is the total # of particles of that species. Theta_m is the
characteristic vibrational temperature for the species and its mode M,
as defined in the vibfile read by the species
command.

Finally, if the mode keyword is used, then the output of this compute
is not Ngroup vibrational temperatures, but rather Ngroup*Nmode
vibrational temperatures, where Nmode is the maximum # of vibrational
modes associated with any species in the system (not just in the
mixture). Thus the sums in the numerator and denominator are over the
different species in the group but for only a single modes of each of
those species. If the species does not define that mode, then its
contribution is zero. For example if species CO2 has vibdof=6, then it
has 3 modes. For the group it is in, it will contribute to 3 output
temperature values, one for mode 1, another for mode 2, another for mode
3.

The vibrational temperature Tsp_m for particles of a single species and
single mode M is calculated the same as explained above.

Output info:

This compute calculates a per-grid array. If the mode keyword is not
specified, the number of columns is equal to the number of groups in the
specified mixture. If is is specified, the number of columns is equal to
the number of groups in the specified mixture times the maximum number
of vibrational modes defined for any species in the system (not just in
the mixture). The ordering of the columns is as follows: T11, T12, T13,
T21, T22, T23, T31, … TN1, TN2, TN3. Where the first index is the
group from 1 to N, and the second index is the vibrational mode (1 to 3
in this example).

This compute performs calculations for all flavors of child grid cells
in the simulation, which includes unsplit, cut, split, and sub cells.
See Section 4.8 of the manual gives
details of how SPARTA defines child, unsplit, split, and sub cells. Note
that cells inside closed surfaces contain no particles. These could be
unsplit or cut cells (if they have zero flow volume). Both of these
kinds of cells will compute a zero result for all their values.
Likewise, split cells store no particles and will produce a zero result.
This is because their sub-cells actually contain the particles that are
geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all
their values.

The array can be accessed by any command that uses per-grid values from
a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in temperature units.

Restrictions:

none

Related commands:

compute grid command

Default:

none

create_box command

Syntax:

create_box xlo xhi ylo yhi zlo zhi

	xlo,xhi = box bounds in the x dimension (distance units)

	ylo,yhi = box bounds in the y dimension (distance units)

	zlo,zhi = box bounds in the z dimension (distance units)

Examples:

create_box 0 1 0 1 0 1
create_box 0 1 0 1 -0.5 0.5
create_box 0 10.0 0 5.0 -4.0 0.0

Description:

Set the size of the simulation box.

For a 2d simulation, as specifed by the dimension
command, zlo < 0.0 and zhi > 0.0 is required. This means the z
dimensions straddle 0.0. Typical values are -0.5 and 0.5, but this is
not required. See Section 6.1 of the
manual for more information about 2d simulations.

For 2d axisymmetric simulations, as set by the
dimension and boundary
commands, the ylo setting must be 0.0. See Section 6.2 of the manual for more information
about axisymmetric simulations.

Restrictions:

none

Related commands:

none

Default:

none

create_grid command

Syntax:

create_grid Nx Ny Nz keyword args ...

	Nx,Ny,Nz = size of 1st-level grid in each dimension

	zero or more keywords/args pairs may be appended

	keyword = block or clump or random or stride or levels or subset or
region or inside

	block args = Px Py Pz = # of processors in each dimension, any can be * (see below)

	clump arg = xyz or xzy or yxz or yzx or zxy or zyx

	random args = none

	stride arg = xyz or xzy or yxz or yzx or zxy or zyx

	levels arg = Nlevels

	subset args = ilevel Px Py Pz Cx Cy Cz

	ilevel = which level(s) to define, see syntax below

	Px Py Pz = extent of parent cells in each dimension in which to create child cells

	Cx Cy Cz = size of child sub-grid in each dimension within parent cells

	region args = ilevel reg-ID Cx Cy Cz

	ilevel = which level(s) to define, see syntax below

	reg-ID = ID of region which parent cells must be in to create child cells

	Cx Cy Cz = size of child sub-grid in each dimension within parent cells

	inside args = any or all

Examples:

create_grid 10 10 10
create_grid 10 10 10 block * * *
create_grid 10 10 10 block 4 2 5
create_grid 10 10 10 levels 4 subset 2*4 * * * 2 2 3
create_grid 20 10 1 levels 2 subset 2 10*15 3*7 1 2 2 1
create_grid 20 10 1 levels 3 region 2 b2 2 2 1 region 3 b3 2 3 1 inside any
create_grid 20 10 1 levels 2 subset 2 10*15 3*7 1 2 2 1 region 3 b3 2 3 1
create_grid 8 8 10 levels 3 subset 2 5* * * 4 4 4 subset 3 1 2*3 3* 2 2 1

Description:

Overlay a grid over the simulation domain defined by the
create_box command. The grid can also be defined
by the read_grid command.

The grid in SPARTA is hierarchical, as described in Section
howto. The entire simulation box is a single parent grid cell at
level 0. It is subdivided into Nx by Ny by Nz cells at level 1. Each of those
cells can be a child cell (no further sub-division) or can be a parent cell
which is further subdivided into Nx by Ny by Nz cells at level 2. This can
recurse to as many levels as desired. Different cells can stop recursing at
different levels. Each level can define its own unique Nx, Ny, Nz values
for subdivision. Note that a grid with a single level is simply a uniform grid
with Nx by Ny by Nz cells in each dimension.

Each child grid cell is owned by a unique processor. The details of
how child cells are assigned to processors by the various options of
this command are described below. The cells assigned to each
processor will either be “clumped” or “dispersed”.

The block and clump keywords produce clumped assignments of child
cells to each processor. This means each processor’s cells will be
geometrically compact. The random and stride keywords, produce
dispersed assignments of child cells to each processor.

Important

See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell assignments and their relative performance trade-offs.
The balance_grid command can be used after the grid is created, to assign child cells to processors in different ways. The “fix balance” command can be used to re-assign them in a load-balanced manner periodically during a running simulation.

A single-level grid is defined by specifying only the arguments Nx,
Ny, Nz, with no additional levels keyword. This will
create a uniform Nx by Ny by Nz grid of child cells. For 2d simulations,
Nz must equal 1.

One of the keywords block, clump, random, or strided can be
used to determine which processors are assigned which cells in the
grid. The inside keyword is ignored for single-level grids. If no
keyword is used, a setting of block 0 0 0 is the default.

	The block keyword

	maps the P processors to a Px by Py by Pz logical grid that overlays the actual Nx by Ny by Nz grid.
This effectively assigns a contiguous 3d sub-block of cells to each processor.

Any of the Px, Py, Pz parameters can be specified with an asterisk
“*”, in which case SPARTA will choose the number of processors in that
dimension. It will do this based on the size and shape of the global
grid so as to minimize the surface-to-volume ratio of each processor’s
sub-block of cells.

The product of Px, Py, Pz must equal P, the total # of processors SPARTA
is running on. For a 2d simulation, Pz must equal 1. If multiple
partitions are being used then P is the number of processors in this
partition; see Section 2.6 for an
explanation of the -partition command-line switch.

Note that if you run on a large, prime number of processors P, then a
grid such as 1 x P x 1 will be required, which may incur extra
communication costs.

	The random keyword

	means that each grid cell will be assigned randomly
to one of the processors. Note that in this case different processors
will typically not be assigned exactly the same number of cells.

	The clump keyword

	means that the Pth clump of cells is assigned to
the same processor, where P is the number of processors. E.g. if
there are N = 100 cells and 10 processors, then the 1st processor
(proc 0) will be assigned cells 1 to 10. The 2nd processor (proc 1)
will be assigned cells 11 to 20. And The 10th processor (proc 9) will
be assigned cells 91 to 100.

	The stride keyword

	means that every Pth cell is assigned to the same
processor, where P is the number of processors. E.g. if there are 100
cells and 10 processors, then the 1st processor (proc 0) will be
assigned cells 1,11,21, …, 91. The 2nd processor (proc 1) will be
assigned cells 2,12,22 …, 92. The 10th processor (proc 9) will be
assigned cells 10,20,30, …, 100.

The argument for stride and clump determines how the N grid cells
are ordered and is some permutation of the letters x, y, and z.
Each of the N cells has 3 indices (I,J,K) to describe its location in
the 3d grid. If the stride argument is yxz, then the cells will be
ordered from 1 to N with the y dimension (J index) varying fastest, the
x dimension next (I index), and the z dimension slowest (K index).

A hierarchical grid with more than one level can be defined using the
levels keyword. The Nlevels argument is the number of levels
which must be 2 or more. The entire simulation box is level 0 in the
hierarchy. The settings for Nx,Ny,Nz specify the level 1 grid. All
other levels must be defined by using either the subset or region
keyword in addition to the levels keyword.

A block, clump, random, or stride keyword can be specified in
addition to the levels keyword for a hierarchical grid. As
described above, they determine how level 1 grid cells are assigned to
processors, as described above. In the hierarchical case all grid
cells of level 2 or higher that are within a single level 1 cells are
assigned to the processor that owns the level 1 cell.

The settings for every level, from 2 to Nlevels, must be specified
exactly once via the ilevel argument to either a subset or
region keyword. ilevel can be specfied as a single number or use
a wildcard asterisk in place of or in conjuction with one or two
integers to specify multiple levels at the same time. This takes the
form “*” or “n” or “n” or “m*n”. An asterisk with no numeric values
means all levels from 2 to Nlevels. A leading asterisk means all
levels from 2 to n (inclusive). A trailing asterisk means all levels
from n to Nlevels (inclusive). A middle asterisk means all levels from
m to n (inclusive).

	For the subset keyword,

	the Px, Py, Pz arguments specify which cells
in the previous level are flagged as parents and sub-divided to create
cells at the new level. For example, if the level 1 grid is
100x100x100, then Px, Py, Pz for level 2 could select any contiguous
range of cells from 1 to 100 in x, y, or z. If the level 2 grid is
4x4x2 within any level 1 cell (as set by Cx, Cy, Cz), then Px, Py, Pz
for level 3 could select any contiguous range of cells from 1 to 4 in
x, y and 1 to 2 in z. Each of the Px, Py, Pz arguments can be a
single number or be specified with a wildcard asterisk, the same as
described above for ilevel, where the bounds of Px (for example) are
1 to Cx in the preceeding parent level.

The Cx, Cy, Cz arguments are the number of new cells (in each
dimension) to partition each selected parent cell into. Cz must be
one for 2d. Any of Cx, Cy, Cz may have a value of 1, but they cannot
all be 1. Note that for each new level, only grid cells that exist in
the previous level are partitioned further. E.g. level 3 cells are
only added to level 2 cells that exist, since some level 1 cells may
not have been partitioned into level 2 cells.

For example this command creates a two-level grid:

create_grid 10 10 10 levels 2 subset 2 * * * 2 2 3

The 1st level is 10x10x10. Each of the 1000 level 1 cells is further
partitioned into 2x2x3 cells. This means the total number of
resulting grid cells is 1000 * 12 = 12000.

This command creates a 3-level grid:

create_grid 8 8 10 levels 3 subset 2 5* * * 4 4 4 subset 3 1 2*3 3* 2 2 1

The first level is 8x8x10. The second level is 4x4x4 within each
level 1 cell, but only half or 320 of the 640 level 1 cells are
sub-divided, namely those with x indices from 5 to 8. Those with x
indices from 1 to 4 remain as level 1 cells. Some of the level 2
cells are further partitioned into 2x2x1 level 3 cells. For the 4x4x4
level 2 grid within 320 or the level 1 cells, only the level 2 cells
with x index = 1, y index = 2-3, and z-index = 3-4 are further
partitioned into level 3 cells, which is just 4 of the 64 level 2
cells. The resulting grid thus has 24640 grid cells: 320 level 1
cells, 19200 level 2 cells, and 5120 level 3 cells.

	For the region keyword,

	the subset of cells in the previous level
which are flagged as parents and sub-divided is determined by which of
them are in the geometric region specified by reg-ID.

The region command can define volumes for simple
geometric objects such as a sphere or rectangular block. It can also
define unions or intersections of simple objects or other union or
intersection objects. by defining an appropriate region, a complex
portion of the simulation domain can be refined to a new level.

	The inside keyword

	Each grid cell at the previous level is tested to see whether it is
“in” the region. The inside keyword determines how this is done.
If inside is set to any, which is the default, then a grid cell is
in the region if any of its corner points (4 in 2d, 8 in 3d) is in the
region. If inside is set to all, then all 4 or 8 of its corner
points must be in the region for a grid cell to be in the region.
Note that the side option for the region command can
be used to define whether the inside or outside of the geometric
region is considered to be “in” the region.

If the grid cell is in the region, then it is refined using the Cx, Cy,
Cz arguments in the same way the subset keyword uses them.
Examples using the region keyword are given above.

Restrictions:

This command can only be used after the simulation box is defined by the
create_box command.

Related commands:

	create_box command

	read_grid command

Default:

The default setting for block vs clump vs random vs stride is block
with Px = Py = Pz = *. The inside keyword has a default setting of any.

create_particles command

create_particles/kk command

Syntax:

create_particles mix-ID style args keyword value ...

	mix-ID = ID of mixture to use when creating particles

	style = n or single

	n args = Np

	Np = 0 or number of particles to create

	single args = species-ID x y z vx vy vz

	species-ID = ID of species of single particle

	x,y,z = position of particle (distance units)

	vx,vy,vz = velocity of particle (velocity units)

	zero or more keyword/value pairs may be appended

	keyword = global or region or species or density or
temperature or velocity or twopass

	global value = yes or no

	region value = region-ID

	species values = svar xvar yvar zvar

	density values = dvar xvar yvar zvar

	temperature values = tvar xvar yvar zvar

	velocity values = vxvar vyvar vzvar xvar yvar zvar

	twopass values = none

Examples:

create_particles background n 0
create_particles air n 100000 region sphere
create_particles air n 100000 global yes
create_particles air single 3 5.0 6.0 5.4 10.0 -1.0 0.0
create_particles air n 0 species mySpecies xpos NULL zpos
create_particles air n 0 density myDens xgrid ygrid NULL
create_particles air n 0 temperature myTemp xgrid ygrid zgrid
create_particles air n 0 velocity myVx NULL myVz xpos ypos NULL twopass

Description:

Create particles and add them to the simulation domain. The attributes
of individual particles, such as species and velocity, are determined by
the mixture attributes, as specied by the mix-ID. In particular the
temp, trot, tvib, and vstream attributes of the mixture affect
create particle velocities and internal energy modes. See the
mixture command for more details. Note that this
command can be used multiple times to add more and more particles.

Particles are only created in grid cells which are entirely external to
surfaces. Particles are not created in grid cells cut by surfaces.

Important

When a particle is created at a specified temperature (as set by the mixture command), it’s rotational and vibrational energy will also be initialized, consistent with the mixture temperatures.
The rotate and vibrate options of the collide_modify command determine how internal energy modes are initialized. If the collide command has not yet been specified, then no rotational or vibrational energy will be assigned to created particles. Thus if you wish to create particles with non-zero internal energy, the collide and (optionally) collide_modify commands must be used before this command.

If the n style is used with Np = 0, then the number of created
particles is calculated by SPARTA as a function of the global fnum
value, the mixture number density, and the flow volume of the simulation
domain.

The fnum value is set by the global fnum command.
The mixture nrho is set by the mixture command. The
flow volume of the simulation is the total volume of the simulation
domain as specified by the create_box command,
minus any volume that is interior to surfaces defined by the
read_surf command. Note that the flow volume
includes volume contributions from grid cells cut by surfaces. However
particles are only created in grid cells entirely external to surfaces.
This means that particles may be created in external cells at a
(slightly) higher density to compensate for no particles being created
in cut cells that still contribute to the overall flow volume.

If the n style is used with a non-zero Np, then exactly Np
particles are created, which can be useful for debugging or benchmarking
purposes.

Based on the value of Np, each grid cell will have a target number of
particles M to insert, which is a function of the cell’s volume as
compared to the total system flow volume. If M has a fractional value,
e.g. 12.5, then 12 particles will be inserted, and a 13th depending on
the outcome of a random number generation. As grid cells are looped
over, the remainder fraction is accumulated, so that exactly Np
particles are created across all the processors.

Important

The preceeding calculation is actually done using weighted cell volumes. Grid cells can be weighted using the global weight command.

Each particle is inserted at a random location within the grid cell. The
particle species is chosen randomly in accord with the frac settings
of the collection of species in the mixture, as set by the
mixture command. The velocity of the particle is set
to the sum of the streaming velocity of the mixture and a thermal
velocity sampled from the thermal temperature of the mixture. Both the
streaming velocity and thermal temperature are also set by the
mixture command. The internal rotational and
vibrational energies of the particle are also set based on the trot
and tvib settings for the mixture, as explained above.

The single style creates a single particle. This can be useful for
debugging purposes, e.g. to advect a single particle towards a surface.
A single particle of the specified species is inserted at the specified
position and with the specified velocity. In this case the mix-ID is
ignored.

This is the meaning of the other allowed keywords.

	The global keyword

	only applies when the n style is used, and controls how particles are generated in parallel.

If the value is yes, then every processor loops over all Np particles. As the coordinates of each is generated, each processor checks what grid cell it is in, and only stores the particle if it owns that grid cell. Thus an identical set of particles are created, no matter how many processors are running the simulation

Important

The global yes option is not yet implemented.

If the value is no, then each of the P processors generates a N/P subset of particles, using its own random number generation. It only adds particles to grid cells that it owns, as described above. This is a faster way to generate a large number of particles, but means that the individual attributes of particles will depend on the number of processors and the mapping of grid cells to procesors. The overall set of created particles should have the same statistical properties as with the yes setting.

	If the region keyword

	is used, then a particle will only added if its position is within the specified region-ID. This can be used to only allow particle insertion within a subset of the simulation domain. Note that the side option for the region command can be used to define whether the inside or outside of the geometric region is considered to be “in” the region.

Important

If the region and n keywords are used together, less than N particles may be added.
This is because grid cells will be candidates for particle insertion, unless they are entirely outside the bounding box that encloses the region.
Particles those grid cells attempt to add are included in the count for N, even if some or all of the particle insertions are rejected due to not being inside the region.

	The species keyword

	can be used to create particles with a
spatially-dependent separation of species. The specified svar is the
name of an equal-style variable whose formula should
evaluate to a species number, i.e. an integer from 1 to Nsp, where Nsp
is the number of species in the mixture with mix-ID. Since equal-style
variables evaluate to floating-point values, this value is truncated to
an integer value. The formula for the species variable can use one or
two or three variables which will store the x, y, or z coordinates of
the particle that is being created. If used, these variables must be
internal-style variables defined in the input
script; their initial numeric values can be anything. They must be
internal-style variables, because this command resets their values
directly. Their names are specified as xvar, yvar, and zvar. If
any of them is not used in the svar formula, it can be specified as
NULL.

When a particle is added, its coordinates are stored in the xvar, yvar, zvar variables if they are specified. The svar variable is then evaluated. The returned value is used to set the species of that particle, based on the list of species defined for the mixture. If the returned value is <= 0 or greater than Nsp = the number of species in the mixture, then no particle is created.

As an example, these commands can be used in a 2d simulation, to create
a particle distribution with species 1 on top of species 2 with a
sinudoidal interface between the two species, as illustrated in the
snapshot of the initial particle distribution. Click on the image for a
larger version. Note that when using this option less than the requested
N particles can be created if the species variable returns values <= 0
or greater than Nsp = the number of species in the mixture.

variable x internal 0
variable y internal 0
variable n equal 3
variable s equal "(v_y < 0.5*(ylo+yhi) + 0.15*yhi*sin(2*PI*v_n*v_x/xhi)) + 1"
create_particles species n 10000 species s x y NULL

[image: image0]

	The density keyword

	can be used to create particles with a
spatially-dependent density variation. The specified dvar is the name
of an equal-style variable whose formula should
evaluate to a positive value. The formula for dvar can use one or two
or three variables which will store the x, y, or z coordinates of the
geometric center point of a grid cell. If used, these other variables
must be internal-style variables defined in the
input script; their initial numeric values can by anything. Their names
are specified as xvar, yvar, and zvar. If any of them is not used
in the dvar formula, it can be specified as NULL.

When particles are added to a grid cell, its center point coordinates
are stored in xvar, yvar, zvar if they are defined. The dvar
variable is then evaluated. The returned value is used as a scale factor
on the number of particles to create in that grid cell. Thus a value of
0.5 would create half as many particles in that grid cell as would
otherwise be the case, due to the global fnum and mixture nrho
settings that define the density, as explained above. A value of 1.2
would create 20% more particles in that grid cell.

As an example, these commands can be used in a 2d simulation, to create
more particles towards the upper right corner of the domain and less
towards the lower left corner, as illustrated in the snapshot of the
initial particle distribution. Click on the image for a larger version.
Note that less than requested N particles will be created in this case
because all the scale factors generated by the variable d are less
than 1.0.

variable x internal 0
variable y internal 0
variable d equal "v_x/xhi * v_y/yhi"
create_particles air n 10000 density d x y NULL

[image: image1]

	The temperature keyword

	can be used to create particles with a
spatially-dependent thermal temperature variation. The specified tvar
is the name of an equal-style variable whose formula
should evaluate to a positive The formula for the tvar variable
can use one or two or three variables which will store the x, y, or z
coordinates of the geometric center point of a grid cell. If used, these
other variables must be internal-style variables
defined in the input script; their initial numeric values can by
anything. Their names are specified as xvar, yvar, and zvar. If
any of them is not used in the tvar formula, it can be specified as
NULL.

When particles are added to a grid cell, its center point coordinates
are stored in xvar, yvar, zvar if they are defined. The tvar
variable is then evaluated. The returned value is used as a scale factor
on the thermal temperature number for particles created in that grid
cell. Thus a value of 0.5 would create particles with a thermal
temperature half of what would otherwise be the case, due to the mixture
temp setting which defines the thermal temperature, as explained
above. A value of 1.2 would create particles with a 20% higher thermal
temperature.

As an example, these commands can be used in a 2d simulation, to create
a thermal temperature gradient in x, where the temperature on the left
side of the box is the default value, and the temperature on the right
side is 3x larger.

variable x internal 0
variable t equal "1.0 + 2.0*(v_x-xlo)/(xhi-xlo)"
create_particles air n 10000 temperature t x NULL NULL

	The velocity keyword

	can be used to create particles with a spatially-dependent streaming velocity. The specified vxvar, vyvar, vzvar are the names of equal-style variables whose formulas should evaluate to the corresponding component of the streaming velocity. If any of them are specified as NULL, then that streaming velocity component is set by the corresponding global or mixture streaming velocity component, the same as if the velocity keyword were not used.

The formulas for the vxvar, vyvar, vzvar variables can use one or
two or three variables which will store the x, y, or z coordinates of
the particle that is being created. If used, these other variables must
be internal-style variables defined in the input
script; their initial numerica values can by anything. Their names are
specified as xvar, yvar, and zvar. If any of them is not used in
the vxvar, vyvar, vzvar formulas, it can be specified as NULL.

When a particle is added, its coordinates are stored in xvar, yvar,
zvar if they are defined. The vxvar, vyvar, vzvar variables are
then evaluated. The returned values are used to set the streaming
velocity of that particle. A thermal velocity is also added to the
particle, using the the global or mixture temperature, as described
above.

As an example, these commands can be used in a 2d simulation, to give
particles an initial velocity pointing towards the upper right corner of
the domain with a magnitude that makes them all reach that point at the
same time (assuming their thermal velocity is small and it is not a
collisional flow). Click on the image to play an animation of the
effect.

variable x internal 0
variable y internal 0
variable vx equal (xhi-v_x)/(1000*7.0e-9) # timesteps and timestep-size
variable vy equal (yhi-v_y)/(1000*7.0e-9)
create_particles air n 10000 velocity vx vy NULL x y NULL

[image: image2]

	The twopass keyword

	does not require a value. If used, the creation
procedure will loop over the creation grid cells twice, the same as the
KOKKOS package version of this command does, so that it can reallocate
memory efficiently, e.g. on a GPU. If this keyword is used the
non-KOKKOS and KOKKOS version will generate exactly the same set of
particles, which makes debugging easier. If the keyword is not used, the
non-KOKKOS and KOKKOS runs will use random numbers differently and thus
generate different particles, though they will be statistically similar.

This command (or more generically styles) can take a suffix as shown at
the top of this page.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

mixture command,
fix emit/face command

Default:

The option default is global = no.

dimension command

Syntax:

dimension N

	N = 2 or 3

Examples:

dimension 2
dimension 3

Description:

Set the dimensionality of the simulation. By default SPARTA runs 3d
simulations, but 2d simulations can also be run.

2d axi-symmetric models can be run by setting the dimension to 2, and
defining the lower boundary in the y-dimension to axi-symmetric via the
boundary command.

Restrictions:

This command must be used before the simulation box is defined by a
create_box command.

Related commands:

none

Default:

dimension 3

dump command

Ref: dump image command

Syntax:

dump ID style select-ID N file args

	ID = user-assigned name for the dump

	style = particle or grid or surf or image

	select-ID = which particles, grid cells, surface elements to dump

	for dump style = particle or image, use a mixture ID

	for style = grid, use a grid group ID

	for style = surf, use a surface group ID

	N = dump every this many timesteps

	file = name of file to write dump info to

	args = list of arguments for a particular style

	particle args = list of particle attributes

possible attributes = id, type, proc, x, y, z, xs, ys, zs, vx, vy, vz, ke, erot, evib, p_ID, p_ID[N], c_ID, c_ID[N], f_ID, f_ID[N], v_name

	id = particle ID

	type = particle species

	proc = ID of owning processor

	x,y,z = unscaled particle coordinates

	xs,ys,zs = scaled particle coordinates

	vx,vy,vz = particle velocities

	ke,erot,evib = translational, rotational, and vibrational energy

	p_ID = custom per-particle vector with ID

	p_ID[N] = Nth column of custom per-particle array with ID

	c_ID = per-particle vector calculated by a compute with ID

	c_ID[N] = Nth column of per-particle array calculated by a compute, with ID, N can include wildcard (see below)

	f_ID = per-particle vector calculated by a fix with ID

	f_ID[N] = Nth column of per-particle array calculated by a fix. With ID, N can include wildcard (see below)

	v_name = per-particle vector calculated by a particle-style variable with name

	grid args = list of grid attributes

possible attributes = id, idstr, proc, xlo, ylo, zlo, xhi, yhi, zhi, c_ID, c_ID[N], f_ID, f_ID[N], v_name

	id = integer form of grid cell ID

	idstr = string form of grid cell ID

	proc = processor that owns grid cell

	xlo,ylo,zlo = coords of lower left corner of grid cell

	xhi,yhi,zhi = coords of lower left corner of grid cell

	xc,yc,zc = coords of center of grid cell

	vol = flow volume of grid cell (area in 2d)

	c_ID = per-grid vector calculated by a compute with ID

	c_ID[N] = Nth column of per-grid array calculated by a compute with ID, N can include wildcard (see below)

	f_ID = per-grid vector calculated by a fix with ID

	f_ID[N] = Nth column of per-grid array calculated by a fix with ID, N can include wildcard (see below)

	v_name = per-grid vector calculated by a grid-style variable with name

	surf args = list of surf attributes

possible attributes = id, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, c_ID, c_ID[N], f_ID, f_ID[N], v_name

	id = surface element ID

	v1x,v1y,v1z = coords of 1st vertex in surface element

	v1x,v1y,v1z = coords of 2nd vertex in surface element

	v1x,v1y,v1z = coords of 3rd vertex in surface element

	c_ID = per-surf vector calculated by a compute with ID

	c_ID[N] = Nth column of per-surf array calculated by a compute with ID, I can include wildcard (see below)

	f_ID = per-surf vector calculated by a fix with ID

	f_ID[N] = Nth column of per-surf array calculated by a fix with ID, N can include wildcard (see below)

	v_name = per-surf vector calculated by a surf-style variable with name

	image args

Discussed on dump image doc page

Examples:

dump 1 particle all 100 dump.myforce.* id type x y vx fx
dump 2 particle inflow 100 dump.%.myforce id type c_myF[3] v_ke
dump 3 grid all 1000 tmp.grid id proc xlo ylo zlo xhi yhi zhi

Description:

Dump a snapshot of simulation quantities to one or more files every N
timesteps in one of several styles. The image style is the exception;
it creates a JPG or PPM image file of the simulation configuration every
N timesteps, as discussed on the dump image doc
page.

The ID for a dump is used to identify the dump in other commands. Each
dump ID must be unique. The ID can only contain alphanumeric characters
and underscores. You can specify multiple dumpes of the same style so
long as they have different IDs. A dump can be deleted with the
undump command, after which its ID can be re-used.

The style setting determines what quantities are written to the file
and in what format. The particle, grid, surf options are for
particles, grid cells, or surface elements. Settings made via the
dump_modify command can also alter what info is
included in the file and the format of individual values.

The select-ID setting determines which particles, grid cells, or
surface elements are output. For style = particle, the select-ID
is a mixture ID as defined by the mixture command.
Only particles whose species are part of the mixture are output. For
style = grid, the select-ID is for a grid group, as defined by the
group grid command. Only grid cells in the group are
output. For style = surf, the select-ID is for a surface eleemnt
group, as defined by the group surf command. Only
surface elements in the group are output.

As described below, the filename determines the kind of output (text or
binary or gzipped, one big file or one per timestep, one big file or one
per processor).

The precision of values output to text-based dump files can be
controlled by the dump_modify format command and
its options.

The particle and grid and surf styles create files in a simple
text format that is self-explanatory when viewing a dump file. Many of
the SPARTA post-processing tools, including
Pizza.py [http://pizza.sandia.gov], work with this format.

For post-processing purposes the text files are self-describing in the
following sense.

The dimensions of the simulation box are included in each snapshot. This
information is formatted as:

ITEM: BOX BOUNDS xx yy zz
xlo xhi
ylo yhi
zlo zhi

where xlo,xhi are the maximum extents of the simulation box in the
x-dimension, and similarly for y and z. The “xx yy zz” represent 6
characters that encode the style of boundary for each of the 6
simulation box boundaries (xlo,xhi and ylo,yhi and zlo,zhi). Each of the
6 characters is either o = outflow, p = periodic, or s = specular. See
the boundary command for details.

The “ITEM: NUMBER OF ATOMS” or “ITEM: NUMBER OF CELLS” or “ITEM: NUMBER
OF SURFS” entry in each snapshot gives the number of particles, grid
cells, surfaces to follow.

The “ITEM: ATOMS” or “ITEM: CELLS” or “ITEM: SURFS” entry in each
snapshot lists column descriptors for the per-particle or per-grid or
per-surf lines that follow. The descriptors are the attributes specied
in the dump command for the style. Possible attributes are listed above
and will appear in the order specified. An explanation of the possible
attributes is given below.

Dumps are performed on timesteps that are a multiple of N (including
timestep 0). Note that this means a dump will not be performed on the
initial timestep after the dump command is invoked, if the current
timestep is not a multiple of N. This behavior can be changed via the
dump_modify first command. N can be changed
between runs by using the dump_modify every
command.

The specified filename determines how the dump file(s) is written. The
default is to write one large text file, which is opened when the dump
command is invoked and closed when an undump command
is used or when SPARTA exits.

Dump filenames can contain two wildcard characters. If a “*” character
appears in the filename, then one file per snapshot is written and the
“*” character is replaced with the timestep value. For example,
tmp.dump.* becomes tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc.
Note that the dump_modify pad command can be used
to insure all timestep numbers are the same length (e.g. 00010), which
can make it easier to read a series of dump files in order by some
post-processing tools.

If a “%” character appears in the filename, then one file is written for
each processor and the “%” character is replaced with the processor ID
from 0 to P-1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.1, …,
tmp.dump.P-1, etc. This creates smaller files and can be a fast mode
of output on parallel machines that support parallel I/O for output.

Note that the “*” and “%” characters can be used together to produce a
large number of small dump files!

If the filename ends with “.bin”, the dump file (or files, if “*” or “%”
is also used) is written in binary format. A binary dump file will be
about the same size as a text version, but will typically write out much
faster. Of course, when post-processing, you will need to convert it
back to text format or write your own code to read the
binary file. The format of the binary file can be understood by looking
at the tools/binary2txt.cpp file.

Warning

The file “binary2txt.cpp” is not currently shipped with SPARTA

If the filename ends with “.gz”, the dump file (or files, if “*” or “%”
is also used) is written in gzipped format. A gzipped dump file will be
about 3x smaller than the text version, but will also take longer to
write.

Note that in the discussion which follows, for styles which can
reference values from a compute or fix, like the particle, grid, or
surf styles, the bracketed index I can be specified using a wildcard
asterisk with the index to effectively specify multiple values. This
takes the form “*” or “n” or “n” or “m*n”. If N = the size of the
vector (for mode = scalar) or the number of columns in the array (for
mode = vector), then an asterisk with no numeric values means all
indices from 1 to N. A leading asterisk means all indices from 1 to n
(inclusive). A trailing asterisk means all indices from n to N
(inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual columns of the array
had been listed one by one. E.g. these 2 dump commands are equivalent,
since the compute grid command creates a
per-grid array with 3 columns:

compute myGrid all all u v w
dump 2 grid all 100 tmp.dump id c_myGrid[*]
dump 2 grid all 100 tmp.dump id c_myGrid[1] c_myGrid[2] c_myGrid[3]

Particle attributes

This section explains the particle attributes that can be specified as
part of the particle style.

Id is the particle ID. Type is an integer index representing the
particle species. It is a value from 1 to Nspecies, The value
corresponds to the order in which species were defined via the
species command. Proc is the ID of the processor
which currently owns the particle.

The x, y, z attributes write particle coordinates “unscaled”, in
the appropriate distance units. Use xs, ys, zs to
“scale” the coordinates to the box size, so that each value is 0.0 to
1.0.

Vx, Vy, Vz are components of particle velocity. The ke, erot,
and evib attributes are the kinetic, rotational, and vibrational
energies of the particle. A particle’s kinetic energy is given by 1/2 m
(vx^2 + vy^2 + vz^2). The way that rotational and vibrational energy is
treated in collisions and stored by particles is affected by the
collide_modify command.

The p_ID and p_ID[N] attributes allow custom per-particle vectors or
arrays defined by a fix command to be output. The ID in
the attribute should be replaced by the actual ID of the custom particle
attribute that the fix defines. See individal fix commands for details,
e.g. the fix ambipolar command which defines
the custom vector “ionambi” and the custom array “velambi”.

If p_ID is used as an attribute, the custom attribute must be a vector,
and it is output. If p_ID[N] is used, the custom attribute must be an
array, and N must be in the range from 1-M, which will output the Nth
column of the M-column array.

The c_ID and c_ID[I] attributes allow per-particle vectors or arrays
calculated by a compute to be output. The ID in the
attribute should be replaced by the actual ID of the compute that has
been defined previously in the input script. See the
compute command for details.

If c_ID is used as an attribute, the compute must calculate a
per-particle vector, and it is output. If c_ID[I] is used, the compute
must calculate a per-particle array, and I must be in the range from
1-M, which will output the Ith column of the M-column array. See the
discussion above for how I can be specified with a wildcard asterisk to
effectively specify multiple values.

The f_ID and f_ID[I] attributes allow vector or array per-particle
quantities calculated by a fix to be output. The ID in
the attribute should be replaced by the actual ID of the fix that has
been defined previously in the input script.

If f_ID is used as an attribute, the fix must calculate a per-particle
vector, and it is output. If f_ID[I] is used, the fix must calculate a
per-particle array, and I must be in the range from 1-M, which will
output the Ith column of the M-column array. See the discussion above
for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-particle vectors calculated by a
variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been
defined previously in the input script. Only a particle-style variable
can be referenced, since it is the only style that generates
per-particle values. Variables of style particle can reference
per-particle attributes, stats keywords, or invoke other computes,
fixes, or variables when they are evaluated, so this is a very general
means of creating quantities to output to a dump file.

See Section 10 of the manual for information
on how to add new compute and fix styles to SPARTA to calculate
per-particle quantities which could then be output into dump files.

Grid Attributes

This section explains the grid cell attributes that can be specified as
part of the grid style.

Note that dump grid will output one line (per snapshot) for 3 kinds of
child cells: unsplit cells, cut cells, and sub cells of split cells.
Section 6.8 of the manual gives details
of how SPARTA defines child, unsplit, cut, split, and sub cells. This is
different than compute or fix commands
that produce per grid information, which also include split cells in
their output. The dump grid command discards that output since the sub
cells of a split cell provide the needed information for further
processing and visualization. Note that unsplit cells can be outside (in
the flow) or inside surface objects, if they exist.

Id and idstr are two different forms of the grid cell ID. In SPARTA
each grid cell is assigned a unique ID which represents its location, in
a topological sense, within the hierarchical grid. This ID is stored as
an integer such as 5774983, but can also be decoded into a string such
as 33-4-6, which makes it easier to understand the grid hierarchy. In
this case it means the grid cell is at the 3rd level of the hierarchy.
Its grandparent cell was 33 at the 1st level, its parent was cell 4 (at
level 2) within cell 33, and the cell itself is cell 6 (at level 3)
within cell 4 within cell 33. If you specify id, the ID is printed
directly as an integer. If you specify idstr, it is printed as a
string.

Proc is the ID of the processor which currently owns the grid cell.

The xlo, ylo, zlo attributes write the coordinates of the
lower-left corner of the grid cell in the appropriate distance
units. The xhi, yhi, zhi attributes write the
coordinates of the upper-right corner of the grid cell. The xc, yc,
zc attributes write the coordinates of the center point of the grid
cell. The zlo, zhi, zc attributes cannot be used for a 2d
simulation.

The vol attribute is the flow volume of the grid cell (or area in 2d)
for unsplit or cut or sub cells. Section 4.8 of the manual gives details of how
SPARTA defines unsplit and sub cells. Flow volume is the portion of the
grid cell that is accessible to particles, i.e. outside any closed
surface that may intersect the cell. Note that unsplit cells which are
inside a surface object will have a flow volume of 0.0. Likewise a cut
cell which is inside a suface object but which is intersected by surface
element(s) which only touch a face, edge, or corner point of the grid
cell, will have a flow volume of 0.0.

The c_ID and c_ID[I] attributes allow per-grid vectors or arrays
calculated by a compute to be output. The ID in the
attribute should be replaced by the actual ID of the compute that has
been defined previously in the input script. See the
compute command for details.

If c_ID is used as an attribute, and the compute calculates a per-grid
vector, then the per-grid vector is output. If c_ID[I] is used, then I
must be in the range from 1-M, which will output the Ith column of the
M-column per-grid array calculated by the compute. See the discussion
above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

The f_ID and f_ID[I] attributes allow per-grid vectors or arrays
calculated by a fix to be output. The ID in the attribute
should be replaced by the actual ID of the fix that has been defined
previously in the input script.

If f_ID is used as an attribute, and the fix calculates a per-grid
vector, then the per-grid vector is output. If f_ID[I] is used, then I
must be in the range from 1-M, which will output the Ith column of the
M-columne per-grid array calculated by the fix. See the discussion above
for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-grid vectors calculated by a
variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been
defined previously in the input script. Only a grid-style variable can
be referenced, since it is the only style that generates per-grid
values. Variables of style grid can reference per-grid attributes,
stats keywords, or invoke other computes, fixes, or variables when they
are evaluated, so this is a very general means of creating quantities to
output to a dump file.

See Section 10 of the manual for information
on how to add new compute and fix styles to SPARTA to calculate per-grid
quantities which could then be output into dump files.

Surface attributes

This section explains the surface element attributes that can be
specified as part of the surf style. For 2d simulations, a surface
element is a line segment with 2 end points. Crossing the unit +z vector
into the vector (v2-v1) determines the outward normal of the line
segment. For 3d simulations, a surface element is a triangle with 3
corner points. Crossing (v2-v1) into (v3-v1) determines the outward
normal of the triangle.

Id is the surface element ID.

The v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z
attributes write the coordinates of the vertices of the end or corner
points of the surface element. The v1z, v2z, v3x, v3y, and v3z
attributes cannot be used for a 2d simulation.

The c_ID and c_ID[I] attributes allow per-surf vectors or arrays
calculated by a compute to be output. The ID in the
attribute should be replaced by the actual ID of the compute that has
been defined previously in the input script. See the
compute command for details.

If c_ID is used as an attribute, and the compute calculates a per-srf
vector, then the per-surf vector is output. If c_ID[I] is used, then I
must be in the range from 1-M, which will output the Ith column of the
M-column per-surf array calculated by the compute. See the discussion
above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

The f_ID and f_ID[I] attributes allow per-surf vectors or arrays
calculated by a fix to be output. The ID in the attribute
should be replaced by the actual ID of the fix that has been defined
previously in the input script.

If f_ID is used as an attribute, and the fix calculates a per-surf
vector, then the per-surf vector is output. If f_ID[I] is used, then I
must be in the range from 1-M, which will output the Ith column of the
M-column per-surf array calculated by the fix. See the discussion above
for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-surf vectors calculated by a
variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been
defined previously in the input script. Only a surf-style variable can
be referenced, since it is the only style that generates per-surf
values. Variables of style surf can reference per-surf attributes,
stats keywords, or invoke other computes, fixes, or variables when they
are evaluated, so this is a very general means of creating quantities to
output to a dump file.

Important

Surf-style variables have not yet been implemented in SPARTA.

See Section 10 of the manual for information
on how to add new compute and fix styles to SPARTA to calculate per-surf
quantities which could then be output into dump files.

Restrictions:

To write gzipped dump files, you must compile SPARTA with the
-DSPARTA_GZIP option - see the Making SPARTA section of the documentation.

Related commands:

dump image command,
dump_modify command,
undump command

Default:

The defaults for the image style are listed on the dump image doc page.

dump image command

dump movie command

Syntax:

dump ID style mix-ID N file color diameter keyword value ...

	ID = user-assigned name for the dump

	style = image or movie = style of dump command (other styles
particle or grid or surf are discussed on the
dump command doc page)

	mix-ID = mixture ID for which particles to include in image

	N = dump every this many timesteps

	file = name of file to write image to

	color = particle attribute that determines color of each particle

	diameter = particle attribute that determines size of each particle

	zero or more keyword/value pairs may be appended

	keyword = particle or pdiam or grid or gridx or gridy or
gridz or surf or size or view or center or up or zoom
or persp or box or gline or sline or axes or shiny or
ssao

	particle = yes/no

	do or do not draw particles

	pdiam value = number

	numeric value for particle diameter (distance units)

	grid values = color

	color = proc or per-grid compute or fix

	gridx values = xcoord color

	
	xcoord = x value to dray yz plane of grid cells at

	color = proc or per-grid compute or fix

	gridy values = ycoord color

	
	ycoord = y value to dray xz plane of grid cells at

	color = proc or per-grid compute or fix

	gridz values = zcoord color

	
	zcoord = z value to dray xy plane of grid cells at

	color = proc or per-grid compute or fix

	surf values = color diam

	
	color = one or proc or per-surf compute or fix

	diam = diameter of 2d lines as fraction of shortest box length

	size values = width height = size of images

	
	width = width of image in # of pixels

	height = height of image in # of pixels

	view values = theta phi = view of simulation box

	
	theta = view angle from +z axis (degrees)

	phi = azimuthal view angle (degrees)

	theta or phi can be a variable (see below)

	center values = flag Cx Cy Cz = center point of image

	
	flag = “s” for static, “d” for dynamic

	Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)

	Cx,Cy,Cz can be variables (see below)

	up values = Ux Uy Uz = direction that is “up” in image

	
	Ux,Uy,Uz = components of up vector

	Ux,Uy,Uz can be variables (see below)

	zoom value = zfactor = size that simulation box appears in image

	
	zfactor = scale image size by factor > 1 to enlarge, factor < 1 to shrink

	zfactor can be a variable (see below)

	persp value = pfactor = amount of “perspective” in image

	
	pfactor = amount of perspective (0 = none, < 1 = some, > 1 = highly skewed)

	pfactor can be a variable (see below)

	box values = yes/no diam = draw outline of simulation box

	
	yes/no = do or do not draw simulation box lines

	diam = diameter of box lines as fraction of shortest box length

	gline values = yes/no diam = draw outline of each grid cell

	
	yes/no = do or do not draw grid cell outlines

	diam = diameter of grid outlines as fraction of shortest box length

	sline values = yes/no diam = draw outline of each surface element

	
	yes/no = do or do not draw surf element outlines

	diam = diameter of surf element outlines as fraction of shortest box length

	axes values = yes/no length diam = draw xyz axes

	
	yes/no = do or do not draw xyz axes lines next to simulation box

	length = length of axes lines as fraction of respective box lengths

	diam = diameter of axes lines as fraction of shortest box length

	shiny value = sfactor = shinyness of spheres and cylinders

	sfactor = shinyness of spheres and cylinders from 0.0 to 1.0

	ssao value = yes/no seed dfactor = SSAO depth shading

	
	yes/no = turn depth shading on/off

	seed = random # seed (positive integer)

	dfactor = strength of shading from 0.0 to 1.0

Examples:

dump myDump image all 100 dump.*.jpg type type
dump myDump movie all 100 movie.mpg type type

These commands will dump shapshot images of all particles whose species
are in the mix-ID to a file every 100 steps. The last two shell
command will make a movie from the JPG files (once the run has finished)
and play it in the Firefox browser:

dump 4 image all 100 tmp.*.jpg type type pdiam 0.2 view 90 -90
dump_modify 4 pad 4

% convert tmp*jpg tmp.gif
% firefox tmp.gif

Description:

Dump a high-quality ray-traced image of the simulation every N timesteps
and save the images either as a sequence of JPEG or PNG or PPM files, or
as a single movie file. The options for this command as well as the
dump_modify command control what is included in
the image and how it appears.

Any or all of these entities can be included in the images:

	particles (all in mixture or limited to a region)

	grid cells (all or limited to a region)

	x,y,z planes cutting through the grid

	surface elements

Particles can be colored by any attribute allowed by the dump particle command. Grid cells and the x,y,z cutting planes
can be colored by any per-grid attribute calculated by a
compute or fix. Surface elements can
be colored by any per-surf attribute calculated by a
compute or fix.

A series of images can easily be converted into an animated movie of
your simulation (see further details below), or the process can be
automated without writing the intermediate files using the dump movie
command. Other dump styles store snapshots of numerical data asociated
with particles, grid cells, and surfaces in various formats, as
discussed on the dump doc page.

Here are two sample images, rendered as JPG files. Click to see the
full-size images.

[image: image0] [image: image1]

The left image is flow around a sphere with visualization of triangular
surface elements on the sphere surface (colored by surface presssure), a
vertical plane of grid cells (colored by particle density), and a
horizontal plane of particles (colored by chemical species). The right
image is the initial condition for a 2d simulation of Rayleigh-Taylor
mixing as a relatively dense heavy gas (red) mixes with a light gas
(green), driven by gravity in the downward direction.

The filename suffix determines whether a JPEG, PNG, or PPM file is
created with the image dump style. If the suffix is “.jpg” or “.jpeg”,
then a JPEG format file is created, if the suffix is “.png”, then a PNG
format is created, else a PPM (aka NETPBM) format file is created. The
JPEG and PNG files are binary; PPM has a text mode header followed by
binary data. JPEG images have lossy compression; PNG has lossless
compression; and PPM files are uncompressed but can be compressed with
gzip, if SPARTA has been compiled with -DSPARTA_GZIP and a “.gz” suffix
is used.

Similarly, the format of the resulting movie is chosen with the movie
dump style. This is handled by the underlying FFmpeg converter program,
which must be available on your machine, and thus details have to be
looked up in the FFmpeg documentation. Typical examples are: .avi, .mpg,
.m4v, .mp4, .mkv, .flv, .mov, .gif Additional settings of the movie
compression like bitrate and framerate can be set using the
dump_modify command.

To write out JPEG and PNG format files, you must build SPARTA with
support for the corresponding JPEG or PNG library. To convert images
into movies, SPARTA has to be compiled with the -DSPARTA_FFMPEG flag.
See Section 2.2 of the manual for
instructions on how to do this.

Dumps are performed on timesteps that are a multiple of N, including
timestep 0. Note that this means a dump will not be performed on the
initial timestep after the dump command is invoked, if the current
timestep is not a multiple of N. This behavior can be changed via the
dump_modify first command. N can be changed
between runs by using the dump_modify every
command.

Dump image filenames must contain a wildcard character “*”, so that
one image file per snapshot is written. The “*” character is replaced
with the timestep value. For example, tmp.dump.*.jpg becomes
tmp.dump.0.jpg, tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that
the dump_modify pad command can be used to insure
all timestep numbers are the same length (e.g. 00010), which can make it
easier to convert a series of images into a movie in the correct
ordering.

Dump movie filenames on the other hand, must not have any wildcard
character since only one file combining all images into a single movie
will be written by the movie encoder.

Several of the keywords determine what objects are rendered in the
image, namely particles, grid cells, or surface elements. There are
additional optional kewords which control how the image is rendered. As
listed below, all of the keywords have defaults, most of which you will
likely not need to change. The dump modify also
has options specific to the dump image style, particularly for assigning
colors to particles and other image features.

Rendering of particles

Particles are drawn by default using the color and diameter
settings. The particle keyword allow you to turn off the drawing of
all particles, if the specified value is no. Only particles in a
geometric region can be drawn using the dump_modify region command.

The color and diameter settings determine the color and size of
particles rendered in the image. They can be any particle attribute
defined for the dump particle command, including type.

The diameter setting can be overridden with a numeric value by the
optional pdiam keyword, in which case you can specify the diameter
setting with any valid particle attribute. The pdiam keyword overrides
the diameter setting with a specified numeric value. All particles
will be drawn with that diameter, e.g. 1.5, which is in whatever
distance units the input script defines.

If type is specified for the color setting, then the color of each
particle is determined by its type = species index. By default the
mapping of types to colors is as follows:

	type 1 = red

	type 2 = green

	type 3 = blue

	type 4 = yellow

	type 5 = aqua

	type 6 = purple

and repeats itself for types > 6. This mapping can be changed by the
dump_modify pcolor command.

If proc is specified for the color setting, then the color of each
particle is determined by the ID of the owning processor. The default
mapping of proc IDs to colors is that same as in the list above, except
that proc P corresponds to type P+1.

If type is specified for the diameter setting then the diameter of
each particle is determined by its type = species index. By default all
types have diameter 1.0. This mapping can be changed by the dump_modify adiam command.

If proc is specified for the diameter setting then the diameter of
each particle will be the proc ID (0 up to Nprocs-1) in whatever
units you are using, which is undoubtably not what you
want.

Any of the particle attributes listed in the dump custom
command can also be used for the color or diameter settings. They
are interpreted in the following way.

If “vx”, for example, is used as the color setting, then the color of
the particle will depend on the x-component of its velocity. The
association of a per-particle value with a specific color is determined
by a “color map”, which can be specified via the dump_modify cmap command. The basic idea is that the
particle-attribute will be within a range of values, and every value
within the range is mapped to a specific color. Depending on how the
color map is defined, that mapping can take place via interpolation so
that a value of -3.2 is halfway between “red” and “blue”, or discretely
so that the value of -3.2 is “orange”.

If “vx”, for example, is used as the diameter setting, then the
particle will be rendered using the x-component of its velocity as the
diameter. If the per-particle value <= 0.0, them the particle will not
be drawn.

Rendering of grid cells

The grid keyword turns on the drawing of grid cells with the specified
color attribute. For 2d, the grid cell is shaded with an rectangle that
is infinitely thin in the z dimension, which allows you to still see the
particles in the grid cell. For 3d, the grid cell is drawn as a solid
brick, which will obscure the particles inside it.

Only grid cells in a geometric region can be drawn using the
dump_modify region command.

The gridx and gridy and gridz keywords turn on the drawing of of a
2d plane of grid cells at the specified coordinate. This is a way to
draw one or more slices through a 3d image.

The dump_modify region command does not apply to
the gridx and gridy and gridz plane drawing.

If proc is specified for the color setting, then the color of each
grid cell is determined by its owning processor ID. This is useful for
visualizing the result of a load balancing of the grid cells, e.g. by
the balance_grid or fix balance commands. By default the mapping of proc
IDs to colors is as follows:

	proc ID 1 = red

	proc ID 2 = green

	proc ID 3 = blue

	proc ID 4 = yellow

	proc ID 5 = aqua

	proc ID 6 = purple

and repeats itself for IDs > 6. Note that for this command, processor
IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to
Nprocs-1. This mapping can be changed by the dump_modify gcolor command.

The color setting can also be a per-grid compute or fix. In this case,
it is specified as c_ID or c_ID[N] for a compute and as f_ID and
f_ID[N] for a fix.

This allows per grid cell values in a vector or array to be used to
color the grid cells. The ID in the attribute should be replaced by the
actual ID of the compute or fix that has been defined previously in the
input script. See the compute or fix
command for details.

If c_ID is used as a attribute, then the per-grid vector calculated by
the compute is used. If c_ID[N] is used, then N must be in the range
from 1-M, which will use the Nth column of the per-grid array calculated
by the compute.

If f_ID is used as a attribute, then the per-grid vector calculated by
the fix is used. If f_ID[N] is used, then N must be in the range from
1-M, which will use the Nth column of the per-grid array calculated by
the fix.

The manner in which values in the vector or array are mapped to color is
determined by the dump_modify cmap command.

Rendering of surface elements

The surf keyword turns on the drawing of surface elements with the
specified color attribute. For 2d, the surface element is a line whose
diameter is specified by the diam setting as a fraction of the minimum
simulation box length. For 3d it is a triangle and the diam setting is
ignored. The entire surface is rendered, which in 3d will hide any grid
cells (or fractions of a grid cell) that are inside the surface.

The dump_modify region command does not apply to
surface element drawing.

If one is specified for the color setting, then the color of every
surface element is drawn with the color specified by the dump_modify scolor keyword, which is gray by default.

If proc is specified for the color setting, then the color of each
surface element is determined by its owning processor ID. Surface
elements are assigned to owning processors in a round-robin fashion. By
default the mapping of proc IDs to colors is as follows:

	proc ID 1 = red

	proc ID 2 = green

	proc ID 3 = blue

	proc ID 4 = yellow

	proc ID 5 = aqua

	proc ID 6 = purple

and repeats itself for IDs > 6. Note that for this command, processor
IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to
Nprocs-1. This mapping can be changed by the dump_modify scolor command, which has not yet been added to
SPARTA.

The color setting can also be a per-surf compute or fix. In this case,
it is specified as c_ID or c_ID[N] for a compute and as f_ID and
f_ID[N] for a fix.

This allows per-surf values in a vector or array to be used to color the
surface elemtns. The ID in the attribute should be replaced by the
actual ID of the compute or fix that has been defined previously in the
input script. See the compute or fix
command for details.

If c_ID is used as a attribute, then the per-surf vector calculated by
the compute is used. If c_ID[N] is used, then N must be in the range
from 1-M, which will use the Nth column of the per-surf array calculated
by the compute.

If f_ID is used as a attribute, then the per-surf vector calculated by
the fix is used. If f_ID[N] is used, then N must be in the range from
1-M, which will use the Nth column of the per-surf array calculated by
the fix.

The manner in which values in the vector or array are mapped to color is
determined by the dump_modify cmap command.

The size keyword sets the width and height of the created images, i.e.
the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d
simulation space is mapped to the 2d plane of the image. Basically they
control how the simulation box appears in the image.

All of the view, center, up, zoom, and persp values can be
specified as numeric quantities, whose meaning is explained below. Any
of them can also be specified as an equal-style variable, by using v_name as the value, where “name”
is the variable name. In this case the variable will be evaluated on the
timestep each image is created to create a new value. If the equal-style
variable is time-dependent, this is a means of changing the way the
simulation box appears from image to image, effectively doing a pan or
fly-by view of your simulation.

The view keyword determines the viewpoint from which the simulation
box is viewed, looking towards the center point. The theta value is
the vertical angle from the +z axis, and must be an angle from 0 to 180
degrees. The phi value is an azimuthal angle around the z axis and can
be positive or negative. A value of 0.0 is a view along the +x axis,
towards the center point. If theta or phi are specified via
variables, then the variable values should be in degrees.

The center keyword determines the point in simulation space that will
be at the center of the image. Cx, Cy, and Cz are speficied as
fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of
the simulation box. These values do not have to be between 0.0 and 1.0,
if you want the simulation box to be offset from the center of the
image. Note, however, that if you choose strange values for Cx, Cy,
or Cz you may get a blank image. Internally, Cx, Cy, and Cz are
converted into a point in simulation space. If flag is set to “s” for
static, then this conversion is done once, at the time the dump command
is issued. If flag is set to “d” for dynamic then the conversion is
performed every time a new image is created. If the box size or shape is
changing, this will adjust the center point in simulation space.

The up keyword determines what direction in simulation space will be
“up” in the image. Internally it is stored as a vector that is in the
plane perpendicular to the view vector implied by the theta and pni
values, and which is also in the plane defined by the view vector and
user-specified up vector. Thus this internal vector is computed from the
user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it
cannot be parallel to the view vector, implied by the theta and
phi values.

The zoom keyword scales the size of the simulation box as it appears
in the image. The default zfactor value of 1 should display an image
mostly filled by the particles in the simulation box. A zfactor > 1
will make the simulation box larger; a zfactor < 1 will make it
smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in
the image. Depth perspective makes lines that are parallel in simulation
space appear non-parallel in the image. A pfactor value of 0.0 means
that parallel lines will meet at infininty (1.0/pfactor), which is an
orthographic rendering with no persepctive. A pfactor value between
0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will
create a highly skewed image with a large amount of perspective.

Important

The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are
rendered as thin cylinders in the image. If no is set, then the box
boundaries are not drawn and the diam setting is ignored. If yes is
set, the 12 edges of the box are drawn, with a diameter that is a
fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d).
The color of the box boundaries can be set with the dump_modify boxcolor command.

The gline keyword determines how the outlines of grid cells are
rendered as thin cylinders in the image. If the gridx or gridy or
gridz keywords are specified to draw a plane(s) of grid cells, then
outlines of all cells in the plane(s) are drawn. If the planar options
are not used, then the outlines of all grid cells are drawn, whether the
grid keyword is specified or not. In this case, the dump_modify region command can be used to restrict which grid
cells the outlines are drawn for.

For the gline keywork, if no is set, then grid outlines are not
drawn and the diam setting is ignored. If yes is set, the 12 edges
of each grid cell are drawn, with a diameter that is a fraction of the
shortest box length in x,y,z (for 3d) or x,y (for 2d). The color of the
grid cell outlines can be set with the dump_modify glinecolor command.

The sline keyword determines how the outlines of surface elements are
rendered as thin cylinders in the image. If no is set, then the
surface element outlines are not drawn and the diam setting is
ignored. If yes is set, a line is drawn for 2d and a triangle outline
for 3d surface elements, with a diameter that is a fraction of the
shortest box length in x,y,z (for 3d) or x,y (for 2d). The color of the
surface element outlines can be set with the dump_modify slinecolor command.

The axes keyword determines how the coordinate axes are rendered as
thin cylinders in the image. If no is set, then the axes are not drawn
and the length and diam settings are ignored. If yes is set, 3
thin cylinders are drawn to represent the x,y,z axes in colors
red,green,blue. The origin of these cylinders will be offset from the
lower left corner of the box by 10%. The length setting determines how
long the cylinders will be as a fraction of the respective box lengths.
The diam setting determines their thickness as a fraction of the
shortest box length in x,y,z (for 3d) or x,y (for 2d).

The shiny keyword determines how shiny the objects rendered in the
image will appear. The sfactor value must be a value 0.0 <= sfactor
<= 1.0, where sfactor = 1 is a highly reflective surface and sfactor
= 0 is a rough non-shiny surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO)
model for depth shading. If yes is set, then particles further away
from the viewer are darkened via a randomized process, which is
perceived as depth. The calculation of this effect can increase the cost
of computing the image by roughly 2x. The strength of the effect can be
scaled by the dfactor parameter. If no is set, no depth shading is
performed.

A series of JPEG, PNG, or PPM images can be converted into a movie file
and then played as a movie using commonly available tools. Using dump
style movie automates this step and avoids the intermediate step of
writing (many) image snapshot file.

To manually convert JPEG, PNG or PPM files into an animated GIF or MPEG
or other movie file you can:

	
	Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert -loop 1 *.ppm foo.mpg

Animated GIF files from ImageMagick are unoptimized. You can use a
program like gifsicle to optimize and massively shrink them. MPEG
files created by ImageMagick are in MPEG-1 format with rather
inefficient compression and low quality.

	
	Use QuickTime.

Select “Open Image Sequence” under the File menu Load the images into
QuickTime to animate them Select “Export” under the File menu Save
the movie as a QuickTime movie (*.mov) or in another format.
QuickTime can generate very high quality and efficiently compressed
movie files. Some of the supported formats require to buy a license
and some are not readable on all platforms until specific runtime
libraries are installed.

	
	Use FFmpeg

FFmpeg is a command line tool that is available on many platforms and
allows extremely flexible encoding and decoding of movies.

cat snap.*.jpg | ffmpeg -y -f image2pipe -c:v mjpeg -i - -b:v 2000k movie.m4v
cat snap.*.ppm | ffmpeg -y -f image2pipe -c:v ppm -i - -b:v 2400k movie.avi

Frontends for FFmpeg exist for multiple platforms. For more
information see the FFmpeg homepage [http://www.ffmpeg.org/]

You can play a movie file as follows:

	
	Use your browser to view an animated GIF movie.

Select “Open File” under the File menu Load the animated GIF file

	b) Use the freely available mplayer or ffplay tool to view a movie.
Both are available for multiple OSes and support a large variety of
file formats and decoders.

% mplayer foo.mpg
% ffplay bar.avi

	
	Use the Pizza.py [http://www.sandia.gov/~sjplimp/pizza.html] animate tool [http://www.sandia.gov/~sjplimp/pizza/doc/animate.html], which works directly on a series of image files.

a = animate("foo*.jpg")

	d) QuickTime and other Windows- or MacOS-based media players can
obviously play movie files directly. Similarly for corresponding
tools bundled with Linux desktop environments. However, due to
licensing issues with some file formats, the formats may require
installing additional libraries, purchasing a license, or may not be
supported.

Restrictions:

To write JPEG images, you must use the -DSPARTA_JPEG switch when
building SPARTA and link with a JPEG library. To write PNG images, you
must use the -DSPARTA_PNG switch when building SPARTA and link with a
PNG library.

To write movie files, you must use the -SPARTA_FFMPEG switch when
building SPARTA. The FFmpeg executable must also be available on the
machine where SPARTA is being run. Typically it’s name is lowercase,
i.e. ffmpeg.

See Steps to build a SPARTA executable using make and Steps to build a SPARTA executable using CMake sections of the documentation for details on how to compile with optional switches.

Note that since FFmpeg is run as an external program via a pipe, SPARTA
has limited control over its execution and no knowledge about errors and
warnings printed by it. Those warnings and error messages will be
printed to the screen only. Due to the way image data is communicated to
FFmpeg, it will often print the message + pipe:: Input/output error :pre
+ which can be safely ignored. Other warnings and errors have to be
addressed according to the FFmpeg documentation. One known issue is that
certain movie file formats (e.g. MPEG level 1 and 2 format streams) have
video bandwith limits that can be crossed when rendering too large of
image sizes. Typical warnings look like this:

[mpeg @ 0x98b5e0] packet too large, ignoring buffer limits to mux it
[mpeg @ 0x98b5e0] buffer underflow st=0 bufi=281407 size=285018
[mpeg @ 0x98b5e0] buffer underflow st=0 bufi=283448 size=285018

In this case it is recommended to either reduce the size of the image or
encode in a different format that is also supported by your copy of
FFmpeg, and which does not have this limitation (e.g. .avi, .mkv, mp4).

Related commands:

dump,
dump_modify,
undump

Default:

The defaults for the keywords are as follows:

	particle = yes

	pdiam = not specified (use diameter setting)

	grid = not specified (no drawing of grid cells)

	gridx = not specified (no drawing of x-plane of grid cells)

	gridy = not specified (no drawing of y-plane of grid cells)

	gridz = not specified (no drawing of z-plane of grid cells)

	surf = not specified (no drawing of surface elements)

	size = 512 512

	view = 60 30 (for 3d)

	view = 0 0 (for 2d)

	center = s 0.5 0.5 0.5

	up = 0 0 1 (for 3d)

	up = 0 1 0 (for 2d)

	zoom = 1.0

	persp = 0.0

	box = yes 0.02

	gline = no 0.0

	sline = no 0.0

	axes = no 0.0 0.0

	shiny = 1.0

	ssao = no

dump_modify command

Syntax:

dump_modify dump-ID keyword values ...

	dump-ID = ID of dump to modify

	one or more keyword/value pairs may be appended

	these keywords apply to various dump styles

keyword = append or buffer or every or fileper or first or
flush or format or nfile or pad or region or thresh

	append arg = yes or no

	buffer arg = yes or no

	every arg = N

	N = dump every this many timesteps

	N can be a variable (see below)

	fileper arg = Np = write one file for every this many processors

	first arg = yes or no

	flush arg = yes or no

	format args = line string, int string, float string, M string, or none

	string = C-style format string

	M = integer from 1 to N, where N = # of per-atom quantities being output

	nfile arg = Nf = write this many files, one from each of Nf processors

	pad arg = Nchar = Number of characters to convert timestep to

	region arg = region-ID or “none”

	Select the region to dump

	thresh args = attribute operation value

	attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style

	operation = “<” or “<=” or “>” or “>=” or “==” or “!=”

	value = numeric value to compare to

	these 3 args can be replaced by the word “none” to turn off thresholding

	these keywords apply only to the (image and movie styles)

keyword = bcolor or bdiam or backcolor or bitrate or
boxcolor or cmap or color or framerate or gcolor or
glinecolor or pcolor or pdiam or scolor or slinecolor

	backcolor arg = color = name of color for background

	bitrate arg = rate = target bitrate for movie in kbps

	boxcolor arg = color = name of color for box lines

	cmap args = mode lo hi style delta N entry1 entry2 … entryN

	mode = particle or grid or surf or xplane or yplane or zplane

	lo = number or min = lower bound of range of color map

	hi = number or max = upper bound of range of color map

	style = 2 letters = “c” or “d” or “s” plus “a” or “f”

	“c” for continuous

	“d” for discrete

	“s” for sequential

	“a” for absolute

	“f” for fractional

	delta = binsize (only used for style “s”, otherwise ignored)

binsize = range is divided into bins of this width

	N = # of subsequent entries

	entry = value color (for continuous style)

	value = number or min or max = single value within range

	color = name of color used for that value

	entry = lo hi color (for discrete style)

	lo/hi = number or min or max = lower/upper bound of subset of range

	color = name of color used for that subset of values

	entry = color (for sequential style)

color = name of color used for a bin of values

	color args = name R G B

	name = name of color

	R,G,B = red/green/blue numeric values from 0.0 to 1.0

	framerate arg = fps

fps = frames per second for movie

	gcolor args = proc color

	proc = proc ID or range of IDs (see below)

	color = name of color or color1/color2/…

	glinecolor arg = color

color = name of color for grid cell outlines

	pcolor args = type color

	type = particle type or range of types or proc ID or range of IDs (see below)

color = name of color or color1/color2/…

	pdiam args = type diam

	type = particle type or range of types (see below)

	diam = diameter of particles of that type (distance units)

	scolor args = proc color

	proc = proc ID or range of IDs (see below)

	color = name of color for surf one option

	slinecolor arg = color

color = name of color for surface element outlines

Examples:

dump_modify 1 format line "%d %d %20.15g %g %g"
dump_modify 1 format float %20.15g
dump_modify myDump thresh x < 0.0 thresh vx >= 3.0
dump_modify 1 every 1000
dump_modify 1 every v_myVar
dump_modify 1 cmap particle min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red

Description:

Modify the parameters of a previously defined dump command. Not all
parameters are relevant to all dump styles.

These keywords apply to all dump styles unless otherwise noted. The
descriptions give details.

	The append keyword

	applies to all dump styles except image and movie. It also applies only to text output files, not to binary or gzipped files. If specified as yes, then dump snapshots are appended to the end of an existing dump file. If specified as no, then a new dump file will be created which will overwrite an existing file with the same name. This keyword can only take effect if the dump_modify command is used after the dump command, but before the first command that causes dump snapshots to be output, e.g. a run command. Once the dump file has been opened, this keyword has no further effect.

	The buffer keyword

	applies only all dump styles except image and movie. It also applies only to text output files, not to binary or gzipped files. If specified as yes, which is the default, then each processor writes its output into an internal text buffer, which is then sent to the processor(s) which perform file writes, and written by those processors(s) as one large chunk of text. If specified as no, each processor sends its per-atom data in binary format to the processor(s) which perform file wirtes, and those processor(s) format and write it line by line into the output file.

The buffering mode is typically faster since each processor does the relatively expensive task of formatting the output for its own atoms. However it requires about twice the memory (per processor) for the extra buffering.

	The every keyword

	changes the dump frequency originally specified by the dump command to a new value. The every keyword can be specified in one of two ways. It can be a numeric value in which case it must be > 0. Or it can be an equal-style variable, which should be specified as v_name, where name is the variable name. In this case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump snapshot will be written out. On that timestep, the variable will be evaluated again to determine the next timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq() math functions for equal-style variable, as examples of useful functions to use in this context.
Other similar math functions could easily be added as options for equal-style variable. When using the variable option with the every keyword, you also need to use the first option if you want an initial snapshot written to the dump file.

For example, the following commands will write snapshots at timesteps 0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
dump 1 particle all 100 tmp.dump id type x y z
dump_modify 1 every v_s first yes

	The fileper keyword

	documented below with the nfile keyword.

	The first keyword

	determines whether a dump snapshot is written on the very first timestep after the dump command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified in the dump command, including timestep 0. But if this is not the case, a dump snapshot will only be written if the setting of this keyword is yes. If it is no, which is the default, then it will not be written.

	The flush keyword

	applies to all dump styles except image and movie. It also applies only when the styles are used to write multiple successive snapshots to the same file. It determines whether a flush operation is invoked after a dump snapshot is written to the dump file. A flush insures the output in that file is current (no buffering by the OS), even if SPARTA halts before the simulation completes.

	The format keyword

	can be used to change the default numeric format output by the text-based dump styles: particle, grid, surf.

All the specified format strings are C-style formats, e.g. as used by the C/C++ printf() command. The line keyword takes a single argument which is the format string for an entire line of output with N fields for each particle, grid cell, or suraface elememt, which you must enclose in quotes if it is more than one field. The int and float keywords take a single format argument and are applied to all integer or floating-point quantities output. The setting for M string also takes a single format argument which is used for the Mth value output in each line, e.g. the 5th column is output in high precision for “format 5 %20.15g”.

The format keyword can be used multiple times. The precedence is that for each value in a line of output, the M format (if specified) is used, else the int or float setting (if specified) is used, else the line setting (if specified) for that value is used, else the default setting is used. A setting of none clears all previous settings, reverting all values to their default format.

Note

Grid cell IDs are stored internally as 4-byte or 8-byte signed integers, depending on how SPARTA was compiled.
When specifying the format int option you can use a “%d”-style format identifier in the format string and SPARTA will convert this to the corresponding 8-byte form it it is needed when outputting those values.
However, when specifying the line option or format M string option for those values, you should specify a format string appropriate for an 8-byte signed integer, e.g. one with “%ld”, if SPARTA was compiled with the -DSPARTA_BIGBIG option for 8-byte IDs.

	The nfile or fileper keywords

	apply to all dump styles except image and movie. They can be used in conjunction with the “%” wildcard character in the specified dump file name. As explained on the dump command doc page, the “%” character causes the dump file to be written in pieces, one piece for each of P processors. By default P = the number of processors the simulation is running on. The nfile or fileper keyword can be used to set P to a smaller value, which can be more efficient when running on a large number of processors.

	The nfile keyword

	sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next 24 processors and write it to a dump file.

	For the fileper keyword

	the specified value of Np means write one file for every Np processors. For example, if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write it to a dump file.

	The pad keyword

	only applies when the dump filename is specified with a wildcard “*” character which becomes the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded length, e.g. 100 or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading zeroes so they are all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000. This can be useful so that post-processing programs can easily read the files in ascending timestep order.

	The region keyword

	only applies to the dump particle and image styles. If specified, only particles in the region will be written to the dump file or included in the image. Only one region can be applied as a filter (the last one specified). See the region command for more details. Note that a region can be defined as the “inside” or “outside” of a geometric shape, and it can be the “union” or “intersection” of a series of simpler regions.

	The thresh keyword

	only applies to the dump particle and image styles. Multiple thresholds can be specified. Specifying “none” turns off all threshold criteria. If thresholds are specified, only particles whose attributes meet all the threshold criteria are written to the dump file or included in the image. The possible attributes that can be tested for are the same as those that can be specified in the dump particle command. Note that different attributes can be output by the dump particle command than are used as threshold criteria by the dump_modify command. E.g. you can output the coordinates of particles whose velocity components are above some threshold.

These keywords apply only to the dump image command and command-dump-movie styles. Any keyword that affects an image, also affects a movie, since the movie is simply a collection of images. Some of the keywords only affect the command-dump-movie style. The descriptions give details.

	The backcolor keyword

	can be used with the dump image command to set the background color of the images. The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

	The bitrate keyword

	can be used with the command-dump-movie to define the size of the resulting movie file and its quality via setting how many kbits per second are to be used for the movie file. Higher bitrates require less compression and will result in higher quality movies. The quality is also determined by the compression format and encoder. The default setting is 2000 kbit/s, which will result in average quality with older compression formats.

Important

Not all movie file formats supported by dump movie allow the bitrate to be set.
If not, the setting is silently ignored.

	The boxcolor keyword

	can be used with the dump image command to set the color of the simulation box drawn around the particles in each image. See the “dump image box” command for how to specify that a box be drawn. The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

	The cmap keyword

	can be used with the dump image command command to define a color map that is used to draw “objects” which can be particles, grid cells, or surface elements. The mode setting must be particle or grid or surf or gridx or gridy or gridz which correspond to the same keywords in the dump image command.

Color maps are used to assign a specific RGB (red/green/blue) color value to an individual object when it is drawn, based on the object’s attribute, which is a numeric value, e.g. the x-component of velocity for a particle, if the particle-attribute “vx” was specified in the dump image command.

The basic idea of a color map is that the attribute will be within a range of values, and that range is associated with a a series of colors (e.g. red, blue, green). A specific value (vx = -3.2) can then mapped to the series of colors (e.g. halfway between red and blue), and a specific color is determined via an interpolation procedure.

There are many possible options for the color map, enabled by the cmap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the attribute. If numeric values are used for lo and/or hi, then values that are lower/higher than that value are set to the value. I.e. the range is static. If lo is specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be calculated each time an image is drawn, based on the set of objects being visualized.

The style setting is two letters, such as “ca”. The first letter is either “c” for continuous, “d” for discrete, or “s” for sequential. The second letter is either “a” for absolute, or “f” for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range. A discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values covering the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as values within the range. A fractional color map is one in which the values to which colors are assigned are specified as a fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red is to be assigned to objects with a value of 5.0, then for an absolute color map the number 5.0 would be used. But for a fractional map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting is only specified if the style is sequential. It specifies the bin size to use within the range for assigning consecutive colors to. For example, if the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20 colors will be assigned to the range. The first will be from -10.0 <= color1 < -9.0, then 2nd from -9.0 <= color2 < -8.0, etc.

The N setting is how many entries follow. The format of the entries depends on whether the color map style is continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range of values or min or max. The value of the first entry must be min and the value of the last entry must be max. Any entries in between must have increasing values. Note that numeric values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the “a” or “f” in the style setting for the color map.

Here is how the entries are used to determine the color of an individual object, given the value X of its attribute. X will fall between 2 of the entry values. The color of the object is linearly interpolated (in each of the RGB values) between the 2 colors associated with those entries. For example, if X = -5.0 and the 2 surrounding entries are “red” at -10.0 and “blue” at 0.0, then the object’s color will be halfway between “red” and “blue”, which happens to be “purple”.

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers within the range of values or lo can be min or hi can be max. The lo and hi settings of the last entry must be min and max. Other entries can have any lo and hi values and the sub-ranges of different values can overlap. Note that numeric lo and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the “a” or “f” in the style setting for the color map.

Here is how the entries are used to determine the color of an individual object, given the value X of its attribute. The entries are scanned from first to last. The first time that lo <= X <= hi, X is assigned the color associated with that entry. You can think of the last entry as assigning a default color (since it will always be matched by X), and the earlier entries as colors that override the default. Also note that no interpolation of a color RGB is done. All objects will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color of an individual object, given the value X of its attribute. The range is partitioned into N bins of width binsize. Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2 bins, it is considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N, then the colors are repeated. For example if 2 entries with colors red and green are specified, then the odd numbered bins will be red and the even bins green. The color of the object is the color of its bin. Note that the sequential color map is really a shorthand way of defining a discrete color map without having to specify where all the bin boundaries are.

	The color keyword

	can be used with the dump image command to define a new color name, in addition to the 140-predefined colors (see below), and associates 3 red/green/blue RGB values with that color name. The color name can then be used with any other dump_modify keyword that takes a color name as a value. The RGB values should each be floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140 pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined color names with new RBG values.

	The framerate keyword

	can be used with the command-dump-movie to define the duration of the resulting movie file. Movie files written by the dump movie command have a default frame rate of 24 frames per second and the images generated will be converted at that rate. Thus a sequence of 1000 dump images will result in a movie of about 42 seconds. To make a movie run longer you can either generate images more frequently or lower the frame rate. To speed a movie up, you can do the inverse. Using a frame rate higher than 24 is not recommended, as it will result in simply dropping the rendered images. It is more efficient to dump images less frequently.

	The gcolor keyword

	can be used one or more times with the dump image command, only when its grid color setting is proc, to set the color that grid cells will be drawn in the image.

The proc setting should be an integer from 1 to Nprocs = the number of processors. A wildcard asterisk can be used in place of or in conjunction with the proc argument to specify a range of processor IDs. This takes the form “*” or “n” or “n” or “m*n”. If N = the number of processors, then an asterisk with no numeric values means all procs from 1 to N. A leading asterisk means all procs from 1 to n (inclusive). A trailing asterisk means all procs from n to N (inclusive). A middle asterisk means all procs from m to n (inclusive). Note that for this command, processor IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to Nprocs-1.

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option. Or it can be two or more colors separated by a “/” character, e.g. red/green/blue. In the former case, that color is assigned to all the specified processors. In the latter case, the list of colors are assigned in a round-robin fashion to each of the specified processors.

	The glinecolor keyword

	can be used with the dump image command to set the color of the grid cell outlines drawn around the grid cells in each image. See the “dump image gline” command for how to specify that cell outlines be drawn. The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

	The pcolor keyword

	can be used one or more times with the dump image command, only when its particle color setting is type or procs, to set the color that particles will be drawn in the image.

If the particle color setting is type, then the specified type for the pcolor keyword should be an integer from 1 to Ntypes = the number of particle types. A wildcard asterisk can be used in place of or in conjunction with the type argument to specify a range of particle types. This takes the form “*” or “n” or “n” or “m*n”. If N = the number of particle types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If the particle color setting is proc, then the specified type for the pcolor keyword should be an integer from 1 to Nprocs = the number of processors. A wildcard asterisk can be used in place of or in conjunction with the type argument to specify a range of processor IDs, just as described above for particle types. Note that for this command, processor IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to Nprocs-1.

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option. Or it can be two or more colors separated by a “/” character, e.g. red/green/blue. In the former case, that color is assigned to all the specified particle types. In the latter case, the list of colors are assigned in a round-robin fashion to each of the specified particle types.

	The pdiam keyword

	can be used with the dump image command, when its particle diameter setting is type, to set the size that particles of each type will be drawn in the image. The specified type should be an integer from 1 to Ntypes. As with the pcolor keyword, a wildcard asterisk can be used as part of the type argument to specify a range of particle types. The specified diam is the size in whatever distance units command the input script is using.

	The scolor keyword

	can be used one or more times with the dump image command, only when its surface element color setting is one or proc, to set the color that surface elements will be drawn in the image.

When the surf color is one, the proc setting for this command is ignored.

When the surf color is proc, the proc setting for this command should be an integer from 1 to Nprocs = the number of processors. A wildcard asterisk can be used in place of or in conjunction with the proc argument to specify a range of processor IDs. This takes the form “*” or “n” or “n” or “m*n”. If N = the number of processors, then an asterisk with no numeric values means all procs from 1 to N. A leading asterisk means all procs from 1 to n (inclusive). A trailing asterisk means all procs from n to N (inclusive). A middle asterisk means all procs from m to n (inclusive). Note that for this command, processor IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to Nprocs-1.

When the surf color is one, the specified color setting for this command must be a single color which is any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

When the surf color is proc, the color setting for this command can be one or more colors separated by a “/” character, e.g. red/green/blue. For a single color, that color is assigned to all the specified processors. For two or more colors, the list of colors are assigned in a round-robin fashion to each of the specified processors.

	The slinecolor keyword

	can be used with the dump image command to set the color of the surface element outlines drawn around the surface elements in each image. See the “dump image sline” command for how to specify that surface element outlines be drawn. The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

Restrictions:

none

Related commands:

dump command
dump image command,
undump command

Default:

The option defaults are

	append = no

	buffer = yes for all dump styles except image and movie

	backcolor = black

	boxcolor = yellow

	cmap = mode min max cf 0.0 2 min blue max red, for all modes

	color = 140 color names are pre-defined as listed below

	every = whatever it was set to via the dump command

	fileper = # of processors

	first = no

	flush = yes

	format = %d and %g for each integer or floating point value

	gcolor = * red/green/blue/yellow/aqua/cyan

	glinecolor = white

	nfile = 1

	pad = 0

	pcolor = * red/green/blue/yellow/aqua/cyan

	pdiam = * 1.0

	region = none

	scolor = * gray

	slinecolor = white

	thresh = none

These are the 140 colors that SPARTA pre-defines for use with the dump image command and dump_modify command. Additional colors
can be defined with the dump_modify color command. The 3 numbers listed
for each name are the RGB (red/green/blue) values. Divide each value by
255 to get the equivalent 0.0 to 1.0 value.

Pre-defined colors

	aliceblue = 240, 248, 255

	antiquewhite = 250, 235, 215

	aqua = 0, 255, 255

	aquamarine = 127, 255, 212

	azure = 240, 255, 255

	beige = 245, 245, 220

	bisque = 255, 228, 196

	black = 0, 0, 0

	blanchedalmond = 255, 255,

	05 blue = 0, 0, 255

	blueviolet = 138, 43, 226

	brown = 165, 42, 42

	burlywood = 222, 184, 135

	cadetblue = 95, 158, 160

	chartreuse = 127, 255, 0

	chocolate = 210, 105, 30

	coral = 255, 127, 80

	cornflowerblue = 100, 149, 2

	7 cornsilk = 255, 248, 220

	crimson = 220, 20, 60

	cyan = 0, 255, 255

	darkblue = 0, 0, 139

	darkcyan = 0, 139, 139

	darkgoldenrod = 184, 134, 1

	darkgray = 169, 169, 169

	darkgreen = 0, 100, 0

	darkkhaki = 189, 183, 107

	darkmagenta = 139, 0, 139

	darkolivegreen = 85, 107, 4

	darkorange = 255, 140, 0

	darkorchid = 153, 50, 204

	darkred = 139, 0, 0

	darksalmon = 233, 150, 122

	darkseagreen = 143, 188, 14

	darkslateblue = 72, 61, 139

	darkslategray = 47, 79, 79

	darkturquoise = 0, 206, 209

	darkviolet = 148, 0, 211

	deeppink = 255, 20, 147

	deepskyblue = 0, 191, 255

	dimgray = 105, 105, 105

	dodgerblue = 30, 144, 255

	firebrick = 178, 34, 34

	floralwhite = 255, 250, 240

	forestgreen = 34, 139, 34

	fuchsia = 255, 0, 255

	gainsboro = 220, 220, 220

	ghostwhite = 248, 248, 255

	gold = 255, 215, 0

	goldenrod = 218, 165, 32

	gray = 128, 128, 128

	green = 0, 128, 0

	greenyellow = 173, 255, 47

	honeydew = 240, 255, 240

	hotpink = 255, 105, 180

	indianred = 205, 92, 92

	indigo = 75, 0, 130

	ivory = 255, 240, 240

	khaki = 240, 230, 140

	lavender = 230, 230, 250

	lavenderblush = 255, 240,

	45 lawngreen = 124, 252, 0

	lemonchiffon = 255, 250, 205

	lightblue = 173, 216, 230

	lightcoral = 240, 128, 128

	lightcyan = 224, 255, 255

	lightgoldenrodyellow = 250, 250,

	10 lightgreen = 144, 238, 144

	lightgrey = 211, 211, 211

	lightpink = 255, 182, 193

	lightsalmon = 255, 160, 12

	lightseagreen = 32, 178, 170

	lightskyblue = 135, 206, 250

	lightslategray = 119, 136,

	53 lightsteelblue = 176, 196,

	lightyellow = 255, 255, 22

	lime = 0, 255, 0

	limegreen = 50, 205, 50

	linen = 250, 240, 230

	magenta = 255, 0, 255

	maroon = 128, 0, 0

	mediumaquamarine = 102, 205, 170

	mediumblue = 0, 0, 205

	mediumorchid = 186, 85, 211

	mediumpurple = 147, 112, 21

	mediumseagreen = 60, 179,

	13 mediumslateblue = 123, 104, 238

	mediumspringgreen = 0, 250,

	54 mediumturquoise = 72, 209,

	04 mediumvioletred = 199, 21,

	midnightblue = 25, 25, 112

	mintcream = 245, 255, 250

	mistyrose = 255, 228, 225

	moccasin = 255, 228, 181

	navajowhite = 255, 222, 173

	navy = 0, 0, 128

	oldlace = 253, 245, 230

	olive = 128, 128, 0

	olivedrab = 107, 142, 35

	orange = 255, 165, 0

	orangered = 255, 69, 0

	orchid = 218, 112, 214

	palegoldenrod = 238, 232, 17

	palegreen = 152, 251, 152

	paleturquoise = 175, 238, 2

	palevioletred = 219, 112,

	47 papayawhip = 255, 239, 213

	peachpuff = 255, 239, 213

	peru = 205, 133, 63

	pink = 255, 192, 203

	plum = 221, 160, 221

	powderblue = 176, 224, 230

	purple = 128, 0, 128

	red = 255, 0, 0

	rosybrown = 188, 143, 143

	royalblue = 65, 105, 225

	saddlebrown = 139, 69, 19

	salmon = 250, 128, 114

	sandybrown = 244, 164, 96

	seagreen = 46, 139, 87

	seashell = 255, 245, 238

	sienna = 160, 82, 45

	silver = 192, 192, 192

	skyblue = 135, 206, 235

	slateblue = 106, 90, 205

	slategray = 112, 128, 144

	snow = 255, 250, 250

	springgreen = 0, 255, 127

	steelblue = 70, 130, 180

	tan = 210, 180, 140

	teal = 0, 128, 128

	thistle = 216, 191, 216

	tomato = 253, 99, 71

	turquoise = 64, 224, 208

	violet = 238, 130, 238

	wheat = 245, 222, 179

	white = 255, 255, 255

	whitesmoke = 245, 245, 245

	yellow = 255, 255, 0

	yellowgreen = 154, 205, 50

echo command

Syntax:

echo style

	style = none or screen or log or both

Examples:

echo both
echo log

Description:

This command determines whether SPARTA echoes each input script command
to the screen and/or log file as it is read and processed. If an input
script has errors, it can be useful to look at echoed output to see the
last command processed.

The command-line switch -echo can be
used in place of this command.

Restrictions:

none

Related commands:

none

Default:

echo log

fix command

Syntax:

fix ID style args

	ID = user-assigned name for the fix

	style = one of a long list of possible style names (see below)

	args = arguments used by a particular style

Examples:

fix 1 grid/check 100 warn
fix 1 ave/time all 100 5 1000 c_myTemp c_thermo_temp file temp.profile

Description:

Set a fix that will be applied to the system. In SPARTA, a “fix” is an
operation that is applied to the system during timestepping. Examples
include adding particles via inlet boundary conditions or computing
diagnostics. Code for new fixes can be added to SPARTA; see Section 10 of the manual for details.

Fixes perform their operations at different stages of the timestep. If 2
or more fixes operate at the same stage of the timestep, they are
invoked in the order they were specified in the input script.

The ID for a fix is used to identify the fix in other commands. Each fix
ID must be unique; see an exception below. The ID can only contain
alphanumeric characters and underscores. You can specify multiple fixes
of the same style so long as they have different IDs. A fix can be
deleted with the unfix command, after which its ID can
be re-used.

Important

The unfix command is the only way to turn off a fix; simply specifying a new fix with the same style and a different ID will not turn off the first one.

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is created (presumably with new settings). This is the same as if an “unfix” command were first performed on the old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one originally was.

Some fixes store an internal “state” which is written to binary restart
files via the restart or
write_restart commands. This allows the fix to
continue on with its calculations in a restarted simulation. See the
read_restart command for info on how to
re-specify a fix in an input script that reads a restart file. See the
doc pages for individual fixes for info on which ones can be restarted.

Each fix style has its own doc page which describes its arguments and
what it does, as listed below. Here is an alphabetic list of fix styles
available in SPARTA:

	adapt - on-the-fly grid adaptation

	adapt/kk - Kokkos version of fix adapt

	ambipolar - ambipolar approximation for
ionized plasmas

	ave/grid - compute per grid cell
time-averaged quantities

	ave/grid/kk - Kokkos version of fix ave/grid

	ave/histo - compute/output time averaged
histograms

	ave/histo/weight - compute/output weighted
histograms

	ave/surf - compute per surface element
time-averaged quantities

	ave/time - compute/output global
time-averaged quantities

	balance - perform dynamic load-balancing

	balance/kk - Kokkos version of fix balance

	emit/face - emit particles at global
boundaries

	emit/face/kk - Kokkos version of fix
emit/face

	emit/face/file - emit particles at
global boundaries using a distribution defined in a file

	emit/surf - emit particles at surfaces

	grid/check - check if particles are in the
correct grid cell

	grid/check/kk - Kokkos version of fix
grid/check

	move/surf - move surfaces dynamically during
a simulation

	move/surf/kk - Kokkos version of fix
move/surf

	print - print text and variables during a
simulation

	vibmode - discrete vibrational energy modes

There are also additional accelerated compute styles included in the
SPARTA distribution for faster performance on specific hardware. The
list of these with links to the individual styles are given in the pair
section of this page.

In addition to the operation they perform, some fixes also produce one
of four styles of quantities: global, per-particle, per-grid, or
per-surf. These can be used by other commands or output as described
below. A global quantity is one or more system-wide values, e.g. the
temperature of the system. A per-particle quantity is one or more values
per particle, e.g. the kinetic energy of each particle. A per-grid
quantity is one or more values per grid cell. A per-surf quantity is one
or more values per surface element.

Global, per-particle, per-grid, and per-surf quantities each come in two
forms: a single scalar value or a vector of values. Additionaly, global
quantities can also be a 2d array of values. The doc page for each fix
describes the style and kind of values it produces, e.g. a per-particle
vector. Some fixes can produce more than one form of a single style,
e.g. a global scalar and a global vector.

When a fix quantity is accessed, as in many of the output commands
discussed below, it can be referenced via the following bracket
notation, where ID is the ID of the fix:

	f_ID

	entire scalar, vector, or array

	f_ID[I]

	one element of vector, one column of array

	f_ID[I][J]

	one element of array

In other words, using one bracket reduces the dimension of the quantity
once (vector -> scalar, array -> vector). Using two brackets reduces the
dimension twice (array -> scalar). Thus a command that uses scalar fix
values as input can also process elements of a vector or array.

Note that commands and variables which use fix
quantities typically do not allow for all kinds, e.g. a command may
require a vector of values, not a scalar. This means there is no
ambiguity about referring to a fix quantity as f_ID even if it produces,
for example, both a scalar and vector. The doc pages for various
commands explain the details.

Any values generated by a fix can be used in several ways:

	Global values can be output via the
stats_style command. Or the values can be
referenced in a variable equal or variable atom command.

	Per-particle values can be output via the dump particle command. Or the per-particle values can be
referenced in an particle-style variable.

	Per-grid values can be output via the dump grid
command. Or the per-grid values can be referenced in a grid-style variable.

Restrictions:

none

Related commands:

unfix command

Default:

none

fix ablate command

Syntax:

fix ID ablate group-ID Nevery scale source maxrandom

	ID is documented in fix command

	ablate = style name of this fix command

	group-ID = ID of group of grid cells that contain implicit surfaces

	Nevery = perform ablation once every Nevery steps

	scale = scale factor to convert source to grid corner point value
decrement

	source = computeID or fixID or random

computeID = c_ID or c_ID[n] for a compute that calculates per grid cell values
fixID = f_ID or f_ID[n] for a fix that calculates per grid cell values
random = perform a random decrement

	maxrandom = maximum per grid cell decrement as an integer (only
specified if source = random)

Examples:

fix 1 ablate surfcells 0 0.0 random 10
fix 1 ablate surfcells 1000 10.0 c_tally

Description:

Perform ablation once every Nevery steps on a set of grid cell corner
points to induce new implicit surface elements in those grid cells. This
command is also used as an argument to the
read_isurf command so that the grid corner point
values it reads from a file can be assigned to and stored by each grid
cell.

Here are simulation snapshots of 2d and 3d implicit surface models
through which particles flow. Click on any image for a larger image. The
1st and 3rd images are the initial states of the porous media. The 2nd
and 4th images are snapshots midway through an ablation simulation. In
the 2d case, the colorings are by processor for sub-domains each owns.
Particles flow from left to right. The implicit triangles for the 3d
case were created via Marching Cubes (discussed on the
read_isurf command doc page) from a tomographic
image of a sample of NASA FiberForm (TM) material, used as a heat shield
material on spacecraft. Particles flow from top to bottom.

[image: image0][image: image1][image: image2][image: image3]

The specified group-ID must be the name of a grid cell group, as
defined by the group grid command, which contains a set
of grid cells, all of which are the same size, and which comprise a
contiguous 3d array. It must be the same as group-ID used with the
read_isurf command, which specifies its Nx by
Ny by Nz extent. See the read_isurf command
for more details. This command reads the initial values for grid cell
corner points, which are stored by this fix.

The specfied Nevery determines how often an ablation operation is
performed. If Nevery = 0, ablation is never performed. The grid cell
corner point values and the surface elements they induce will remain
static for the duration of subsequent simulations.

The specified scale is a pre-factor on the specified source of
ablation strength. It converts the per grid cell numeric quantities
produced by the source (which may have associated units) to a unitless
decrement value for the grid cell corner points, which range from 0 to
255 inclusive. A value of 255 represents solid material and a value of 0
is void (flow volume for particles). Values in between represent
partially ablated material.

The source can be specified as a per grid cell quantity calculated by
a compute, such as compute isurf/grid,
e.g. the number of collisions of particles with the surfaces in each
grid cell or the amount of energy transferred to the surface by the
collisions. It can also be specified a per grid cell quantity calculated
by a fix, such as fix ave/grid. That fix could
time average per-grid cell quantities from per grid cell computes. In
that case the scale factor should account for applying a time-averaged
quantity at an interval of N steps.

For debugging purposes, the source can also be specified as random
with an additional integer maxrandom value also specified. In this
case, the scale factor should be floating point value between 0.0 and
1.0. Each time ablation is performed, two random numbers are generated
for each grid cell. The first is a random value between 0.0 and 1.0. The
second is a random integer between 1 and maxrandom. If the first random
< scale, then the second random integer is the decrement value for
the cell. Thus scale is effectively the fraction of grid cells whose
corner point values are decremented.

Here is an example of commands that will couple ablation to surface
reaction statistics to modulate ablation of a set of implicit surfaces.
These lines are taken from the
examples/ablation/in.ablation.3d.reactions input script:

surf_collide 1 diffuse 300.0 1.0
surf_react 2 prob air.surf

compute 10 react/isurf/grid all 2
fix 10 ave/grid all 1 100 100 c_10*
dump 10 grid all 100 tmp.grid id c_101

global surfs implicit
fix ablate ablate all 100 2.0 c_101 # could be f_10
read_isurf all 20 20 20 binary.21x21x21 99.5 ablate

surf_modify all collide 1 react 2

The order of these commands matter, so here is the explanation.

The surf_modify command must come after the
read_isurf command, because surfaces must exist
before assigning collision and reaction models to them. The fix ablate command must come before the
read_isurf command, since it uses the ID of the
fix ablate command as an argument to create implicit
surfaces. The fix ablate command takes a compute
or fix as an argument, in this case the ID of the compute react/isurf/grid command. This is to
specify what calculation drives the ablation. In this case, it is the
compute react/isurf/grid command (or
could be the fix ave/grid command) which tallies
counts of surface reactions for implicit triangles in each grid cell.
The compute react/isurf/grid react/isurf/grid command
requires the ID of a surface reaction model, so that it knows the list
of possible reactions to tally. In this case the reaction is set by the
surf_react command, which must therefore comes
near the beginning of this list of commands.

As explained on the read_isurf doc page, the
marching cubes (3d) or marching squares (2d) algorithm is used to
convert a set of grid corner point values to a set of implicit triangles
in each grid cell which represent the current surface of porous material
which is undergoing dynamic ablation. This uses a threshold value,
defined by the read_isurf command, to set the
boundary between solid material and void.

The ablation operation decrements the corner point values of each grid
cell containing porous material. The marching cubes or squares algorithm
is re-invoked on the new corner point values to create a new set of
implicit surfaces, which effectively recess due to the decrement
produced byt the ablative source factor.

The manner in which the per-grid source decrement value is applied to
the grid corner points is as follows. Note that each grid cell has 4
(2d) or 8 (3d) corner point values. Except at the boundary of the 2d of
3d array of grid cells containing porous materials, each corner point is
similarly shared by 4 (2d) or 8 (3d) grid cells.

Within each grid cell, the decrement value is subtracted from the
smallest corner point value. Except that a corner point value cannot
become smaller than 0.0. If this would occur, only a portion of the
decrement is used to set the corner point to 0.0; the remainder is
applid to the next smallest corner point value. And so forth on
successive corner points until all of the decrement is used.

The amount of decrement applied to each corner point is next shared
between all the grid cells (4 or 8) sharing each corner point value. The
sum of those decrements is subtracted from the corner point, except that
it’s final value is set no smaller than 0.0. All the copies of each
corner point value are now identical.

Finally, no corner point value can be nearly equal to the marching
cubes/squares threshold value, else line segments or triangles of zero
or epsilon size will result. So corner points with values X where
thresh-epsilon < X < thresh+epsilon are reset to thresh-epsilon. Thresh
is defined by the read_isurf command. Epsilon is
set to 1.0e-4 in src/fix_ablate.cpp. Note that this is on the scale of
corner point values from 0 to 255.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar and a global vector of length 2. The
global scalar is the current sum of unique corner point values across
the entire grid (not counting duplicate values). This sum assumes that
corner point values are 0.0 on the boundary of the 2d or 3d array of
grid cells containing implicit surface elements.

The 2 vector values are the (1) sum of decrement values for each grid
cell in the most recent ablation operation, and (2) the # of particles
deleted during the most recent ablation operation that ended up “inside”
the newly ablated surface. The latter quantity should be 0. A non-zero
value indicates a corner case in the marching cubes or marching squares
algorithm the developers still need to address.

These values can be accessed by any command that uses global values from
a fix as input. See Section 6.4 for an
overview of SPARTA output options.

The scalar and vector values are unitless.

Restrictions:

This fix can only be used in simulations that define implicit surfaces.

Related commands:

read_isurf command

Default:

none

fix adapt command

fix adapt/kk command

Syntax:

fix ID adapt Nfreq args ...

	ID is documented in fix command

	adapt = style name of this fix command

	Nfreq = perform grid adaptation every this many steps

	args = all remaining args are identical to those defined for the
adapt_grid command

Examples:

fix 1 adapt 1000 all refine particle 10 50
fix 1 adapt 1000 all coarsen particle 10 50
fix 1 adapt 500 subset refine coarsen particle 10 50
fix 1 adapt 10000 all refine surf 0.15 iterate 1 dir 1 0 0
fix 10 adapt 1000 all refine coarsen value c_11 5.0 10.0 iterate 2

Description:

This command performs on-the-fly adapatation of grid cells as a
simulation runs, either by refinement or coarsening or both. Grid
adaptation can also be performed before or between simulations by using
the adapt_grid command.

Refinement means splitting one child cell into multiple new child cells;
the original child cell becomes a parent cell. Coarsening means
combining all the child cells of a parent cell, so that the child cells
are deleted and the parent cell becomes a single new child cell. See
Section howto 4.8 for a description of
the hierarchical grid used by SPARTA and a defintion of child and parent
cells.

Grid adaptation can be useful for adjusting the grid cell sizes to the
current particle density distribution, or mean-free-path of particles,
or to other simulation attributes such as the presence of surface
elements. A well-adapted grid can improve accuracy of the simulation
and/or reduce a simulation’s computational cost.

Adaptation is performed by this command once every Nfreq timesteps.

All of the command arguments which appear after Nfreq, which determine
how adapation is done for both refinement and coarsening, are exactly
the same as for the adapt_grid command.

This includes a group-ID parameter which can be used to limit adaptation
to a subset of current grid cells. See the
adapt_grid command doc page for details.

The one exception is that the iterate keyword cannot be used with the
fix adapt command. Only a single iteration of the action1 and action2
parameters (described on the adapt_grid doc page)
can be performed each time grid adaptation is performed.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which is a flag for whether any grid
cells were adapted on the last timestep it was invoked. The value of the
flag is 1 if any cells were refined or coarsened, else it is 0.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

adapt_grid command,
balance_grid command

Default:

none

fix ambipolar command

Syntax:

fix ID ambipolar especies ion1 ion2 ...

	ID is documented in fix command

	ambipolar = style name of this fix command

	especies = species ID for ambipolar electrons

	ion1,ion2,… = species IDs for one or more ambipolar ions

Examples:

fix 1 ambipolar e N+ O+ NO+

Description:

Enable the ambipolar approximation to be used in a simulation. The
ambipolar approximation is a computationally efficient way to model
low-density plasmas which contain positively-charged ions and
negatively-charged electrons. In this model, electrons are not free
particles which move independently. This would require a simulation with
a very small timestep due to electon’s small mass and high speed (1000x
that of an ion or neutral particle).

Instead each ambipolar electron is assumed to stay “close” to its parent
ion, so that the plasma gas appears macroscopically neutral. Each pair
of particles thus moves together through the simulation domain, as if
they were a single particle, which is how they are stored within SPARTA.
This means a normal timestep can be used.

An overview of how to run simulations with the ambipolar approximation
is given in the Section 6.11. This
includes gas-phase collisions and chemistry as well as surface chemistry
when particles collide with surface elements or the global boundary of
the simulation box. The section also lists all the commands that can be
used in an input script to invoke various options associated with the
ambipolar approximation. All of them depend on this fix ambipolar
command being defined.

This command defines especies which is the species ID associated with
the ambipolar electrons. It also specifies one or more species IDs as
ion1, ion2, etc for ambipolar ions. SPARTA checks that the especies
has a negative charge (as read in by the species
command), and the ions have positive charges. An error is flagged if
that is not the case.

Internally, this fix defines two custom particle attributes. The first
is named “ionambi” and is an integer vector (one integer per particle).
It stores a value of 1 for ambipolar ions, or 0 otherwise. The second is
named “velambi” and is a floating-point arrays (3 values per particle).
It stores the velocity of the ambipolar electron associated with the
ambipolar ion, or zeroes otherwise.

Restart, output info:

No information about this fix is written to binary restart files.

However, the values of the two custom particle attributes defined by
this fix are written to the restart file. Namely the integer value
“ionambi” and floating-point velocity values “velambi” for each
particle. As explained on the read_restart doc
page these values can be re-assigned to particles when a restart file is
read, if a new fix ambipolar command is specified in the restart script
before the first run command is used.

No global or per-particle or per-grid quantities are stored by this fix
for access by various output commands.

However, the two custom particle attributes defined by this fix can be
accessed by the dump particle command, as p_ionambi and
p_velambi. That means those per-particle values can be written to
particle dump files.

Restrictions:

none

Related commands:

collide_modify ambipolar yes

Default:

none

fix ave/grid command

fix ave/grid/kk command

Syntax:

fix ID ave/grid group-ID Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

	ID is documented in fix command

	ave/grid = style name of this fix command

	group-ID = group ID for which grid cells to perform calculation on

	Nevery = use input values every this many timesteps

	Nrepeat = # of times to use input values for calculating averages

	Nfreq = calculate averages every this many timesteps zero or more
input values can be listed

	value = c_ID, c_ID[i], f_ID, f_ID[i], v_name

	c_ID = per-grid vector (or array) calculated by a compute with ID

	c_ID[I] = Ith column of per-grid array calculated by a compute with ID, I can include wildcard (see below)

	f_ID = per-grid vector (or array) calculated by a fix with ID

	f_ID[I] = Ith column of per-grid array calculated by a fix with ID, I can include wildcard (see below)

	v_name = per-grid vector calculated by a grid-style variable with name

zero or more keyword/arg pairs may be appended

	keyword = ave

ave args = one or running

	one = output a new average value every Nfreq steps

	running = accumulate average continuously

Examples:

fix 1 ave/grid all 10 20 1000 c_mine
fix 1 ave/grid all 1 100 100 c_2[1] ave running
fix 1 ave/grid all 1 100 100 c_2[*] ave running
fix 1 ave/grid section1 5 20 100 v_myEng

These commands will dump averages for each species and each grid cell to
a file every 1000 steps:

compute 1 grid species n u v w usq vsq wsq
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Use one or more per-grid vectors as inputs every few timesteps, and
average by grid cell over longer timescales, applying appropriate
normalization factors. The resulting per grid cell averages can be used
by other output commands such as the dump grid command.
Only grid cells in the grid group specified by group-ID are included
in the averaging. See the group grid command for info
on how grid cells can be assigned to grid groups.

Each input value can be the result of a compute or
fix or grid-style variable. The
compute or fix must produce a per-grid vector or array, not a global or
per-particle or per-surf quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command. To time-average per-surf
quantities, see the fix ave/surf command.

Each per-grid value of each input vector is averaged independently.

Computes that produce per-grid vectors or arrays are
those which have the word grid in their style name. See the doc pages
for individual fixes to determine which ones produce
per-grid vectors or arrays.

Note that for values from a compute or fix, the bracketed index I can be
specified using a wildcard asterisk with the index to effectively
specify multiple values. This takes the form “*” or “n” or “n” or
“m*n”. If N = the size of the vector (for mode = scalar) or the number
of columns in the array (for mode = vector), then an asterisk with no
numeric values means all indices from 1 to N. A leading asterisk means
all indices from 1 to n (inclusive). A trailing asterisk means all
indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual columns of the array
had been listed one by one. E.g. these 2 fix ave/grid commands are
equivalent, since the compute grid command
creates a per-grid array with 3 columns:

compute myGrid all all u v w
fix 1 ave/grid all 10 20 1000 c_myGrid[*]
fix 1 ave/grid all 10 20 1000 c_myGrid[1] c_myGrid[2] c_myGrid[3]

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps
the input values will be used in order to contribute to the average. The
final averaged quantities are generated on timesteps that are a multiple
of Nfreq. The average is over Nrepeat quantities, computed in the
preceding portion of the simulation every Nevery timesteps. Nfreq
must be a multiple of Nevery and Nevery must be non-zero even if
Nrepeat is 1. Also, the timesteps contributing to the average value
cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on
timesteps 90,92,94,96,98,100 will be used to compute the final average
on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc.

If a value begins with c_, a compute ID must follow which has been
previously defined in the input script. If no bracketed term is
appended, and the compute calculates a per-grid vector, then the
per-grid vector is used. If c_ID[I] is used, then I must be in the
range from 1-M, which will use the Ith column of the M-column per-grid
array calculated by the compute. See the discussion above for how I can
be specified with a wildcard asterisk to effectively specify multiple
values.

Users can also write code for their own compute styles and add them to SPARTA.

If a value begins with f_, a fix ID must follow which has been
previously defined in the input script. If no bracketed term is
appended, and the fix calculates a per-grid vector, then the per-grid
vector is used. If f_ID[I] is used, then I must be in the range from
1-M, which will use the Ith column of the M-column per-grid array
calculated by the fix. See the discussion above for how I can be
specified with a wildcard asterisk to effectively specify multiple
values.

Note that some fixes only produce their values on certain timesteps,
which must be compatible with Nevery, else an error will result. Users
can also write code for their own fix styles and add them to SPARTA.

If a value begins with v_, a variable name must follow which has been
previously defined in the input script. Only grid-style variables can be
referenced. See the variable command for details.
Note that grid-style variables define a formula which can reference
stats_style keywords, or they can invoke other
computes, fixes, or variables when they are evaluated, so this is a very
general means of specifying quantities to time average.

For averaging of a value that comes from a compute or fix, normalization
is performed as follows. Note that no normalization is performed on a
value produced by a grid-style variable.

If the compute or fix is summing over particles in a grid cell to
calculate a per-grid quantity (e.g. energy or temperature), this takes
the form of a numerator divided by a denominator. For example, see the
formulas discussed on the compute grid doc page,
where the denominator is 1 (for keyword n), or the number of particles
(ke, mass, temp), or the sum of particle masses (u, usq, etc). When this
command averages over a series of timesteps, the numerator and
denominator are summed separately. This means the numerator/denominator
division only takes place when this fix produces output, every Nfreq
timesteps.

For example, say the Nfreq output is over 2 timesteps, and the value
produced by compute grid mass is being averaged.
Say a grid cell has 10 particles on the 1st timestep with a numerator
value of 10.0, and 100 particles on the 2nd timestep with a numerator
value of 50.0. The output of this fix will be (10+50) / (10+100) = 0.54,
not ((10/10) + (50/100)) / 2 = 0.75.

Additional optional keywords also affect the operation of this fix.

The ave keyword determines what happens to the accumulation of
statistics every Nfreq timesteps.

If the ave setting is one, then the values produced on timesteps
that are multiples of Nfreq are independent of each other. Normalization
as described above is performed, and all tallies are zeroed before
accumulating over the next Nfreq steps.

If the ave setting is running, then tallies are never zeroed. Thus
the output at any Nfreq timestep is normalized over all previously
accumulated samples since the fix was defined. The tallies can only be
zeroed by deleting the fix via the unfix command, or by re-defining the
fix, or by re-specifying it.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a per-grid vector or array which can be accessed by
various output commands. A vector is produced if only a single quantity
is averaged by this fix. If two or more quantities are averaged, then an
array of values is produced, where the number of columns is the number
of quantities averaged. The per-grid values can only be accessed on
timesteps that are multiples of Nfreq since that is when averaging is
performed.

This fix performs averaging for all child grid cells in the simulation, which includes unsplit, split, and sub cells. Details of grid geometry in SPARTA of the manual gives details of how SPARTA defines child, unsplit, split, and sub cells.

Grid cells not in the specified group-ID will output zeroes for all their values.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

If performing on-the-fly grid adaptation every N timesteps, using the
fix adapt command, this fix cannot time-average
across time windows > N steps, since the grid may change. This means
Nfreq cannot be > N, and keyword ave = running is not allowed.

Related commands:

compute command,
fix ave/time command

Default:

The option defaults are ave = one.

fix ave/histo command

fix ave/histo/kk command

fix ave/histo/weight command

fix ave/histo/weight/kk command

Syntax:

fix ID style Nevery Nrepeat Nfreq lo hi Nbin value1 value2 ... keyword args ...

	ID is documented in fix command

	style = ave/histo or ave/histo/weight = style name of this fix
command

	Nevery = use input values every this many timesteps

	Nrepeat = # of times to use input values for calculating histogram

	Nfreq = calculate histogram every this many timesteps

	lo,hi = lo/hi bounds within which to histogram

	Nbin = # of histogram bins

	one or more input values can be listed

	value = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID,
f_ID[N], v_name

	x,y,z,vx,vy,vz = particle attribute (position, velocity component)

	c_ID = scalar or vector calculated by a compute with ID

	c_ID[I] = Ith component of vector or Ith column of array calculated by a compute with ID, I can include wildcard (see below)

	f_ID = scalar or vector calculated by a fix with ID

	f_ID[I] = Ith component of vector or Ith column of array calculated by a fix with ID, I can include wildcard (see below)

	v_name = value(s) calculated by an equal-style or particle-style or grid-style variable with name

	zero or more keyword/arg pairs may be appended

keyword = mode or file or region or mix or group or ave
or start or beyond or overwrite or title1 or title2 or
title3

	mode arg = scalar or vector

	scalar = all input values are scalars

	vector = all input values are vectors

	file arg = filename: name of file to output histogram(s) to

	region arg = region-ID for particle inclusion

	mix arg = mixture-ID for particle inclusion

	group arg = group-ID for grid cell inclusion

	ave args = one or running or window

	one = output a new average value every Nfreq steps

	running = output cumulative average of all previous Nfreq steps

	window M = output average of M most recent Nfreq steps

	start args = Nstart: start averaging on this timestep

	beyond arg = ignore or end or extra

	ignore = ignore values outside histogram lo/hi bounds

	end = count values outside histogram lo/hi bounds in end bins

	extra = create 2 extra bins for value outside histogram lo/hi bounds

	overwrite arg = none = overwrite output file with only latest output

	title1 arg = string: text to print as 1st line of output file

	title2 arg = string: text to print as 2nd line of output file

	title3 arg = string: text to print as 3rd line of output file, only for vector mode

Examples:

fix 1 ave/histo 100 5 1000 0.5 1.5 50 c_myGrid* file temp.histo ave running
fix 1 ave/histo 100 5 1000 0 5 100 c_kePart "My output values"
fix 1 ave/histo/weight 1 100 1000 -2.0 2.0 18 vx vy ave running beyond extra

Description:

Use one or more values as inputs every few timesteps to create a single
histogram. The histogram can then be averaged over longer timescales.
The resulting histogram can be used by other output commands, and can also be written to a
file. The fix ave/histo/weight command has identical syntax to fix
ave/histo, except that exactly two values must be specified. See details
below.

A histogram is simply a count of the number of values that fall within a
histogram bin. Nbins are defined, with even spacing between lo and
hi. Values that fall outside the lo/hi bounds can be treated in
different ways; see the discussion of the beyond keyword below.

Each input value can be a particle attribute (position, velocity), or
can be the result of a compute or fix
that produces global or per-particle or per-grid quantities, or the
evaluation of an equal-style or particle-style or grid-style
variable. The set of input values can be either all
global, all per-particle, or all per-grid quantities. Inputs of
different kinds (e.g. global and per-particle) cannot be mixed. Particle
attributes are per-particle vector values. See the doc page for
individual “compute” and “fix” commands to see what kinds of quantities
they generate.

The input values must either be all scalars or all vectors (or arrays),
depending on the setting of the mode keyword.

Note that the output of this command is a single histogram for all input
values combined together, not one histogram per input value. See below
for details on the format of the output of this fix.

If mode = scalar, then the input values must be scalars, or vectors
with a bracketed term appended, indicating the Ith value of the vector
is used.

If mode = vector, then the input values must be vectors, or arrays
with a bracketed term appended, indicating the Ith column of the array
is used.

Note that for values from a compute or fix, the bracketed index I can be
specified using a wildcard asterisk with the index to effectively
specify multiple values. This takes the form “*” or “n” or “n” or
“m*n”. If N = the size of the vector (for mode = scalar) or the number
of columns in the array (for mode = vector), then an asterisk with no
numeric values means all indices from 1 to N. A leading asterisk means
all indices from 1 to n (inclusive). A trailing asterisk means all
indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual elements of the vector
or columns of the array had been listed one by one. E.g. these 2 fix
ave/histo commands are equivalent, since the compute grid command creates a per-grid array with 3 columns:

compute myGrid grid all all u v w
fix 1 ave/histo 100 1 100 c_myGrid file tmp1.grid mode vector
fix 2 ave/histo 100 1 100 c_myGrid[1] c_myGrid[2] c_myGrid[3] file tmp2.grid mode vector

If the fix ave/histo/weight command is used, exactly two values must be
specified. If the values are vectors, they must be the same length. The
first value (a scalar or vector) is what is histogrammed into bins, in
the same manner the fix ave/histo command operates. The second value (a
scalar or vector) is used as a “weight”. This means that instead of each
value tallying a “1” to its bin, the corresponding weight is tallied.
E.g. the Nth entry in the first vector tallies the Nth entry (weight) in
the second vector.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps
the input values will be used in order to contribute to the histogram.
The final histogram is generated on timesteps that are multiple of
Nfreq. It is averaged over Nrepeat histograms, computed in the
preceding portion of the simulation every Nevery timesteps. Nfreq
must be a multiple of Nevery and Nevery must be non-zero even if
Nrepeat is 1. Also, the timesteps contributing to the histogram value
cannot overlap, i.e. Nrepeat*Nevery can not exceed Nfreq.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then input values on
timesteps 90,92,94,96,98,100 will be used to compute the final histogram
on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging
of the histogram is done; a histogram is simply generated on timesteps
100,200,etc.

The particle attribute values (x,y,z,vx,vy,vz) are self-explanatory.

If a value begins with c_, a compute ID must follow which has been
previously defined in the input script. If mode = scalar, then if no
bracketed term is appended, the global scalar calculated by the compute
is used. If a bracketed term is appended, the Ith element of the global
vector calculated by the compute is used. If mode = vector, then if no
bracketed term is appended, the global or per-atom or local vector
calculated by the compute is used. If a bracketed term is appended, the
Ith column of the global or per-particle or per-grid array calculated by
the compute is used. See the discussion above for how I can be specified
with a wildcard asterisk to effectively specify multiple values.

Note that there is a compute reduce command
which can sum per-particle or per-grid or per-surf quantities into a
global scalar or vector which can thus be accessed by fix ave/histo.
Users can also write code for their own compute styles and add them to SPARTA.

If a value begins with f_, a fix ID must follow which has been
previously defined in the input script. If mode = scalar, then if no
bracketed term is appended, the global scalar calculated by the fix is
used. If a bracketed term is appended, the Ith element of the global
vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global or per-atom or local vector
calculated by the fix is used. If a bracketed term is appended, the Ith
column of the global or per-particle or per-grid array calculated by the
fix is used. See the discussion above for how I can be specified with a
wildcard asterisk to effectively specify multiple values.

Note that some fixes only produce their values on certain timesteps,
which must be compatible with Nevery, else an error will result. Users
can also write code for their own fix styles and add them to SPARTA.

If a value begins with v_, a variable name must follow which has been
previously defined in the input script. If mode = scalar, then only
equal-style variables can be used. If mode = vector, then only
particle-style or grid-style variables can be used, which produce
per-particle per-grid vectors respectively. See the
variable command for details.

Note that variables of style equal, particle, and grid define a
formula which can reference individual particle properties or stats
output keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying
quantities to histogram.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be
global scalars, or elements of global vectors. If the mode keyword is
set to vector, then all input values must be global or per-particle or
per-grid vectors, or columns of global or per-particle or per-grid
arrays.

The file keyword allows a filename to be specified. Every Nfreq
steps, one histogram is written to the file. This includes a leading
line that contains the timestep, number of bins, the total count of
values contributing to the histogram, the count of values that were not
histogrammed (see the beyond keyword), the minimum value encountered,
and the maximum value encountered. The min/max values include values
that were not histogrammed. Following the leading line, one line per bin
is written into the file. Each line contains the bin #, the coordinate
for the center of the bin (between lo and hi), the count of values
in the bin, and the normalized count. The normalized count is the bin
count divided by the total count (not including values not
histogrammed), so that the normalized values sum to 1.0 across all bins.

The region, mix, and group keywords limit which particles or grid
cells are included in the histogramming.

The region keyword only applies to per-particle histogramming. Only
particles in the specified region-ID are included in the histogram.
See the region command for details of how geometric
regions are defined.

The mix keyword only applies to per-particle histogramming. Only
particles whose species are in the specified mixture-ID are included
in the histogram, which allows for only a subset of species to be
included. See the mixture command for details of how
mixtures are defined.

The group keyword only applies to per-grid cell histogramming. Only
grid cells in the grid group specified by group-ID are included in the
histogram. See the grid group command for details of
how grid groups are defined.

The ave keyword determines how the histogram produced every Nfreq
steps are averaged with histograms produced on previous steps that were
multiples of Nfreq, before they are accessed by another output command
or written to a file.

If the ave setting is one, then the histograms produced on timesteps
that are multiples of Nfreq are independent of each other; they are
output as-is without further averaging.

If the ave setting is running, then the histograms produced on
timesteps that are multiples of Nfreq are summed and averaged in a
cumulative sense before being output. Each bin value in the histogram is
thus the average of the bin value produced on that timestep with all
preceding values for the same bin. This running average begins when the
fix is defined; it can only be restarted by deleting the fix via the
unfix command, or by re-defining the fix by
re-specifying it.

If the ave setting is window, then the histograms produced on
timesteps that are multiples of Nfreq are summed within a moving
“window” of time, so that the last M histograms are used to produce the
output. E.g. if M = 3 and Nfreq = 1000, then the output on step 10000
will be the combined histogram of the individual histograms on steps
8000,9000,10000. Outputs on early steps will be sums over less than M
histograms if they are not available.

The start keyword specifies what timestep histogramming will begin on.
The default is step 0. Often input values can be 0.0 at time 0, so
setting start to a larger value can avoid including a 0.0 in a running
or windowed histogram.

The beyond keyword determines how input values that fall outside the
lo to hi bounds are treated. Values such that lo <= value <= hi
are assigned to one bin. Values on a bin boundary are assigned to the
lower of the 2 bins. If beyond is set to ignore then values < lo
and values > hi are ignored, i.e. they are not binned. If beyond is
set to end then values < lo are counted in the first bin and values
> hi are counted in the last bin. If beyond is set to extend then
two extra bins are created, so that there are Nbins+2 total bins. Values
< lo are counted in the first bin and values > hi are counted in the
last bin (Nbins+1). Values between lo and hi (inclusive) are counted
in bins 2 thru Nbins+1. The “coordinate” stored and printed for these
two extra bins is lo and hi.

The overwrite keyword will continuously overwrite the output file with
the latest output, so that it only contains one timestep worth of
output. This option can only be used with the ave running setting.

The title1 and title2 and title3 keywords allow specification of
the strings that will be printed as the first 3 lines of the output
file, assuming the file keyword was used. SPARTA uses default values
for each of these, so they do not need to be specified.

By default, these header lines are as follows:

Histogram for fix ID
TimeStep Number-of-bins Total-counts Missing-counts Min-value Max-value
Bin Coord Count Count/Total

In the first line, ID is replaced with the fix-ID. The second line
describes the six values that are printed at the first of each section
of output. The third describes the 4 values printed for each bin in the
histogram.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a global vector and global array which can be accessed
by various output commands. The values can only be accessed on timesteps
that are multiples of Nfreq since that is when a histogram is
generated. The global vector has 4 values:

	1 = total counts in the histogram

	2 = values that were not histogrammed (see beyond keyword)

	3 = min value of all input values, including ones not histogrammed

	4 = max value of all input values, including ones not histogrammed

The global array has # of rows = Nbins and # of columns = 3. The first
column has the bin coordinate, the 2nd column has the count of values in
that histogram bin, and the 3rd column has the bin count divided by the
total count (not including missing counts), so that the values in the
3rd column sum to 1.0.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

compute command,
fix ave/time command,
variable command

Default:

none

The option defaults are mode = scalar, ave = one, start = 0, no file
output, no region/mixture/group restriction on inclusion of particles or
grid cells, beyond = ignore, and title 1,2,3 = strings as described
above.

fix ave/surf command

Syntax:

fix ID ave/surf group-ID Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

	ID is documented in fix command

	ave/surf = style name of this fix command

	group-ID = group ID for which surface elements to perform calculation
on

	Nevery = use input values every this many timesteps

	Nrepeat = # of times to use input values for calculating averages

	Nfreq = calculate averages every this many timesteps zero or more
input values can be listed

	value = c_ID, c_ID[i], f_ID, f_ID[i], v_name

	c_ID = per-surf vector (or array) calculated by a compute with ID

	c_ID[I] = Ith column of per-surf array calculated by a compute with ID, I can include wildcard (see below)

	f_ID = per-surf vector (or array) calculated by a fix with ID

	f_ID[I] = Ith column of per-surf array calculated by a fix with ID, I can include wildcard (see below)

	zero or more keyword/arg pairs may be appended

keyword = ave

	ave args = one or running

	one = output a new average value every Nfreq steps

	running = accumulate average continuously

Examples:

fix 1 ave/surf all 1 100 100 c_surf ave running
fix 1 ave/surf leftcircle 10 20 1000 c_mine[2]
fix 1 ave/surf leftcircle 10 20 1000 c_mine[*]

Description:

Use one or more per-surf vectors as inputs every few timesteps, and
average them surface element by surface element by over longer
timescales, applying appropriate normalization factors. The resulting
per-surf averages can be used by other output commands such as the dump surf command. Only surface elements in the surface group
specified by group-ID are included in the averaging. See the group surf command for info on how surface elements can be
assigned to surface groups.

Each input value can be the result of a compute or
fix. The compute or fix must produce a per-surf vector or
array, not a global or per-particle or per-grid quantity. If you wish to
time-average global quantities from a compute or fix then see the fix ave/time command. To time-average per-grid
quantities, see the fix ave/grid command.

Each per-surf value of each input vector is averaged independently.

Computes that produce per-surf vectors or arrays are
those which have the word surf in their style name. See the doc pages
for individual fixes to determine which ones produce
per-surf vectors or arrays.

Note that for values from a compute or fix, the bracketed index I can be
specified using a wildcard asterisk with the index to effectively
specify multiple values. This takes the form “*” or “n” or “n” or
“m*n”. If N = the size of the vector (for mode = scalar) or the number
of columns in the array (for mode = vector), then an asterisk with no
numeric values means all indices from 1 to N. A leading asterisk means
all indices from 1 to n (inclusive). A trailing asterisk means all
indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual columns of the array
had been listed one by one. E.g. these 2 fix ave/surf commands are
equivalent, since the compute surf command
creates a per-surf array with 4 columns:

compute mySurf all all n fx fy fz
fix 1 ave/surf all 10 20 1000 c_mySurf[*]
fix 1 ave/surf all 10 20 1000 c_mySurf[1] c_mySurf[2] &
 c_mySurf[3] c_mySurf[4]

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps
the input values will be used in order to contribute to the average. The
final averaged quantities are generated on timesteps that are a multiple
of Nfreq. The average is over Nrepeat quantities, computed in the
preceding portion of the simulation every Nevery timesteps. Nfreq
must be a multiple of Nevery and Nevery must be non-zero even if
Nrepeat is 1. Also, the timesteps contributing to the average value
cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on
timesteps 90,92,94,96,98,100 will be used to compute the final average
on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc.

If a value begins with c_, a compute ID must follow which has been
previously defined in the input script. If no bracketed term is
appended, and the compute calculates a per-surf vector, then the
per-surf vector is used. If c_ID[I] is used, then I must be in the
range from 1-M, which will use the Ith column of the M-column per-surf
array calculated by the compute. See the discussion above for how I can
be specified with a wildcard asterisk to effectively specify multiple
values.

Users can also write code for their own compute styles and add them to SPARTA.

If a value begins with f_, a fix ID must follow which has been
previously defined in the input script. If no bracketed term is
appended, and the fix calculates a per-surf vector, then the per-surf
vector is used. If f_ID[I] is used, then I must be in the range from
1-M, which will use the Ith column of the M-column per-surf array
calculated by the fix. See the discussion above for how I can be
specified with a wildcard asterisk to effectively specify multiple
values.

Note that some fixes only produce their values on certain timesteps,
which must be compatible with Nevery, else an error will result. Users
can also write code for their own fix styles and add them to SPARTA.

For averaging of a value that comes from a compute or fix, normalization
is performed as follows. If the compute or fix is summing over particles
to calculate a per-surf quantity (e.g. pressure or energy flux), this
takes the form of a numerator divided by a denominator. For example, see
the formulas discussed on the compute surf doc
page, where the denominator is 1 (for keyword n), area times dt
(timestep) for the other quantities (press, shx, ke, etc). When this
command averages over a series of timesteps, the numerator and
denominator are summed separately. This means the numerator/denominator
division only takes place when this fix produces output, every Nfreq
timesteps.

Additional optional keywords also affect the operation of this fix.

The ave keyword determines what happens to the accumulation of
statistics every Nfreq timesteps.

If the ave setting is one, then the values produced on timesteps
that are multiples of Nfreq are independent of each other. Normalization
as described above is performed, and all tallies are zeroed before
accumulating over the next Nfreq steps.

If the ave setting is running, then tallies are never zeroed. Thus
the output at any Nfreq timestep is normalized over all previously
accumulated samples since the fix was defined. The tallies can only be
zeroed by deleting the fix via the unfix command, or by re-defining the
fix, or by re-specifying it.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a per-surf vector or array which can be accessed by
various output commands. A vector is produced if only a single quantity
is averaged by this fix. If two or more quantities are averaged, then an
array of values is produced, where the number of columns is the number
of quantities averaged. The per-surf values can only be accessed on
timesteps that are multiples of Nfreq since that is when averaging is
performed.

Surface elements not in the specified group-ID will output zeroes for
all their values.

Restrictions:

none

Related commands:

compute command
fix ave/time command

Default:

The option defaults are ave = one.

fix ave/time command

Syntax:

fix ID ave/time Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

	ID is documented in fix command

	ave/time = style name of this fix command

	Nevery = use input values every this many timesteps

	Nrepeat = # of times to use input values for calculating averages

	Nfreq = calculate averages every this many timesteps

one or more input values can be listed

	value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

	c_ID = global scalar or vector or array calculated by a compute with ID

	c_ID[I] = Ith component of global vector or Ith column of global array calculated by a compute with ID, I can include wildcard (see below)

	f_ID = global scalar or vector or array calculated by a fix with ID

	f_ID[I] = Ith component of global vector or Ith column of global array calculated by a fix with ID, I can include wildcard (see below)

	v_name = global value calculated by an equal-style variable with name

	zero or more keyword/arg pairs may be appended

	keyword = mode or file or ave or start or off or title1
or title2 or title3

	mode arg = scalar or vector

	scalar = all input values are global scalars

	vector = all input values are global vectors or global arrays

	ave args = one or running or window M

	one = output a new average value every Nfreq steps

	running = output cummulative average of all previous Nfreq steps

	window M = output average of M most recent Nfreq steps

	start args = Nstart = start averaging on this timestep

	off arg = M = do not average this value

M = value: # from 1 to Nvalues

	file arg = filename = name of file to output time averages to

	title1 arg = string = text to print as 1st line of output file

	title2 arg = string = text to print as 2nd line of output file

	title3 arg = string = text to print as 3rd line of output file, only for vector mode

Examples:

fix 1 ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile
fix 1 ave/time 100 5 1000 c_myCount[2] c_myCount[3] ave window 20 &
 title1 "My output values"
fix 1 ave/time 100 5 1000 c_myCount[*] ave window 20
fix 1 ave/time 1 100 1000 f_indent f_indent[1] file temp.indent off 1

Description:

Use one or more global values as inputs every few timesteps, and average
them over longer timescales. The resulting averages can be used by other
output commands such as stats_style custom, and
can also be written to a file. Note that if no time averaging is done,
this command can be used as a convenient way to simply output one or
more global values to a file.

Each listed value can be the result of a compute or
fix or the evaluation of an equal-style
variable. In each case, the compute, fix, or
variable must produce a global quantity, not a per-grid or per-surf
quantity. If you wish to time-average those quantities, see the fix ave/grid and fix ave/surf
commands.

Computes that produce global quantities are those
which do not have the word particle or grid or surf in their style
name. Only a few fixes produce global quantities. See the
doc pages for individual fixes for info on which ones produce such
values. Variables of style equal are the only ones
that can be used with this fix. Variables of style particle cannot be
used, since they produce per-particle values.

The input values must either be all scalars or all vectors (or arrays),
depending on the setting of the mode keyword. In both cases, the
averaging is performed independently on each input value. I.e. each
input scalar is averaged independently and each element of each input
vector (or array) is averaged independently.

If mode = scalar, then the input values must be scalars, or vectors
with a bracketed term appended, indicating the Ith value of the vector
is used.

If mode = vector, then the input values must be vectors, or arrays
with a bracketed term appended, indicating the Ith column of the array
is used. All vectors must be the same length, which is the length of the
vector or number of rows in the array.

Note that for values from a compute or fix, the bracketed index I can be
specified using a wildcard asterisk with the index to effectively
specify multiple values. This takes the form “*” or “n” or “n” or
“m*n”. If N = the size of the vector (for mode = scalar) or the number
of columns in the array (for mode = vector), then an asterisk with no
numeric values means all indices from 1 to N. A leading asterisk means
all indices from 1 to n (inclusive). A trailing asterisk means all
indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual elements of the vector
or columns of the array had been listed one by one. E.g. these 2 fix
ave/time commands are equivalent, since the compute count command creates, in this case, a global
vector with 3 values.

compute 1 count Ar He O
fix 1 ave/time 100 1 100 c_1 file tmp.count
fix 1 ave/time 100 1 100 c_1[1] c_1[2] c_1[3] file tmp.count

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps
the input values will be used in order to contribute to the average. The
final averaged quantities are generated on timesteps that are a mlutiple
of Nfreq. The average is over Nrepeat quantities, computed in the
preceding portion of the simulation every Nevery timesteps. Nfreq
must be a multiple of Nevery and Nevery must be non-zero even if
Nrepeat is 1. Also, the timesteps contributing to the average value
cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on
timesteps 90,92,94,96,98,100 will be used to compute the final average
on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging
is done; values are simply generated on timesteps 100,200,etc.

If a value begins with c_, a compute ID must follow which has been
previously defined in the input script. If mode = scalar, then if no
bracketed term is appended, the global scalar calculated by the compute
is used. If a bracketed term is appended, the Ith element of the global
vector calculated by the compute is used. If mode = vector, then if no
bracketed term is appended, the global vector calculated by the compute
is used. If a bracketed term is appended, the Ith column of the global
array calculated by the compute is used. See the discussion above for
how I can be specified with a wildcard asterisk to effectively specify
multiple values.

Note that there is a compute reduce command
which can sum per-particle or per-grid or per-surf quantities into a
global scalar or vector which can thus be accessed by fix ave/time. Also
Note that users can also write code for their own compute styles and
add them to SPARTA; their output can then be
processed by this fix.

If a value begins with f_, a fix ID must follow which has been
previously defined in the input script. If mode = scalar, then if no
bracketed term is appended, the global scalar calculated by the fix is
used. If a bracketed term is appended, the Ith element of the global
vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global vector calculated by the fix is
used. If a bracketed term is appended, the Ith column of the global
array calculated by the fix is used. See the discussion above for how I
can be specified with a wildcard asterisk to effectively specify
multiple values.

Note that some fixes only produce their values on certain timesteps,
which must be compatible with Nevery, else an error will result. Users
can also write code for their own fix styles and add them to SPARTA.

If a value begins with v_, a variable name must follow which has been
previously defined in the input script. Variables can only be used as
input for mode = scalar. Only equal-style variables can be referenced.
See the variable command for details. Note that
variables of style equal define a formula which can reference
stats_style keywords, or they can invoke other
computes, fixes, or variables when they are evaluated, so this is a very
general means of specifying quantities to time average.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be
global scalars, or elements of global vectors. If the mode keyword is
set to vector, then all input values must be global vectors, or
columns of global arrays. They can also be global arrays, which are
converted into a series of global vectors (one per column), as explained
above.

The ave keyword determines how the values produced every Nfreq steps
are averaged with values produced on previous steps that were multiples
of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the values produced on timesteps
that are multiples of Nfreq are independent of each other; they are
output as-is without further averaging.

If the ave setting is running, then the values produced on timesteps
that are multiples of Nfreq are summed and averaged in a cummulative
sense before being output. Each output value is thus the average of the
value produced on that timestep with all preceding values. This running
average begins when the fix is defined; it can only be restarted by
deleting the fix via the unfix command, or by
re-defining the fix by re-specifying it.

If the ave setting is window, then the values produced on timesteps
that are multiples of Nfreq are summed and averaged within a moving
“window” of time, so that the last M values are used to produce the
output. E.g. if M = 3 and Nfreq = 1000, then the output on step 10000
will be the average of the individual values on steps 8000,9000,10000.
Outputs on early steps will average over less than M values if they are
not available.

The start keyword specifies what timestep averaging will begin on. The
default is step 0. Often input values can be 0.0 at time 0, so setting
start to a larger value can avoid including a 0.0 in a running or
windowed average.

The off keyword can be used to flag any of the input values. If a
value is flagged, it will not be time averaged. Instead the most recent
input value will always be stored and output. This is useful if one of
more of the inputs produced by a compute or fix or variable are
effectively constant or are simply current values. E.g. they are being
written to a file with other time-averaged values for purposes of
creating well-formatted output.

The file keyword allows a filename to be specified. Every Nfreq
steps, one quantity or vector of quantities is written to the file for
each input value specified in the fix ave/time command. For mode =
scalar, this means a single line is written each time output is
performed. Thus the file ends up to be a series of lines, i.e. one
column of numbers for each input value. For mode = vector, an array of
numbers is written each time output is performed. The number of rows is
the length of the input vectors, and the number of columns is the number
of values. Thus the file ends up to be a series of these array sections.

The title1 and title2 and title3 keywords allow specification of
the strings that will be printed as the first 2 or 3 lines of the output
file, assuming the file keyword was used. SPARTA uses default values
for each of these, so they do not need to be specified.

By default, these header lines are as follows for mode = scalar:

Time-averaged data for fix ID
TimeStep value1 value2 ...

In the first line, ID is replaced with the fix-ID. In the second line
the values are replaced with the appropriate fields from the fix
ave/time command. There is no third line in the header of the file, so
the title3 setting is ignored when mode = scalar.

By default, these header lines are as follows for mode = vector:

Time-averaged data for fix ID
TimeStep Number-of-rows
Row value1 value2 ...

In the first line, ID is replaced with the fix-ID. The second line
describes the two values that are printed at the first of each section
of output. In the third line the values are replaced with the
appropriate fields from the fix ave/time command.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a global scalar or global vector or global array which
can be accessed by various output commands. The values can only be
accessed on timesteps that are multiples of Nfreq since that is when
averaging is performed.

A scalar is produced if only a single input value is averaged and mode
= scalar. A vector is produced if multiple input values are averaged for
mode = scalar, or a single input value for mode = vector. In the
first case, the length of the vector is the number of inputs. In the
second case, the length of the vector is the same as the length of the
input vector. An array is produced if multiple input values are averaged
and mode = vector. The global array has # of rows = length of the
input vectors and # of columns = number of inputs.

Restrictions:

none

Related commands:

compute command,
fix ave/surf command,
variable command

Default:

The option defaults are mode = scalar, ave = one, start = 0, no file
output, title 1,2,3 = strings as described above, and no off settings
for any input values.

fix balance command

fix balance/kk command

Syntax:

fix ID balance Nfreq thresh bstyle args

	ID is documented in fix command

	balance = style name of this fix command

	Nfreq = perform dynamic load balancing every this many steps

	thresh = rebalance if imbalance factor is above this threshhold

	bstyle = random or proc or rcb

random args = none
proc args = none
rcb args = weight
 weight = cell or part or time

	zero or more keyword/value(s) pairs may be appended

	keyword = axes or flip

axes value = dims
 dims = string with any of "x", "y", or "z" characters in it
flip value = yes or no

Examples:

fix 1 balance 1000 1.1 rcb cell
fix 2 balance 10000 1.0 random

Description:

This command dynamically adjusts the assignment of grid cells and their
particles to processors as a simulation runs, to attempt to balance the
computational cost (load) evenly across processors. The load balancing
is “dynamic” in the sense that rebalancing is performed periodically
during the simulation. To perform “static” balancing, before or between
runs, see the balance_grid command.

This command is useful to use during simulations where the spatial
distribution of particles varies with time, leading to load imbalance.

After grid cells have been assigned, they are migrated to new owning
processors, along with any particles they own or other per-cell
attributes stored by fixes. The internal data structures within SPARTA
for grid cells and particles are re-initialized with the new
decomposition.

The details of how child cells are assigned to processors by the various
options of this command are described below. The cells assigned to each
processor will either be “clumped” or “dispersed”.

The rcb keyword will produce clumped assignments of child cells to
each processor. This means each processor’s cells will be geometrically
compact. The random and proc keywords will produce dispersed
assignments of child cells to each processor.

Important

See Section 6.8 of the manual for an
explanation of clumped and dispersed grid cell assignments
and their relative performance trade-offs.

Rebalancing is attempted by this command once every Nfreq timesteps,
but only if the current imbalance factor exceeds the specified thresh.
This factor is defined as the maximum number of particles owned by any
processor, divided by the average number of particles per processor.
Thus an imbalance factor of 1.0 is perfect balance. For 10000 particles
running on 10 processors, if the most heavily loaded processor has 1200
particles, then the factor is 1.2, meaning there is a 20% imbalance. The
thresh setting must be >= 1.0.

Important

This command attempts to minimize the imbalance factor, as defined above.
But computational cost is not strictly proportional to particle count, depending on the collision and chemistry models being used.
Also, changing the assignment of grid cells and particles to processors may lead to additional communication overheads, e.g. when migrating particles between processors.
Thus you should benchmark the run times of your simulation to judge how often balancing should be performed, and how aggressively to set the thresh value.

	The random keyword

	means that each grid cell will be assigned randomly to one of the processors. In this case every processor will typically not be assigned exactly the same number of grid cells.

	The proc keyword

	means that each processor will choose a random processor to assign its first grid cell to. It will then loop over its grid cells and assign each to consecutive processors, wrapping around the collection of processors if necessary. In this case every processor will typically not be assigned exactly the same number of grid cells.

	The rcb keyword

	uses a recurvise coordinate bisectioning (RCB) algorithm to assign spatially-compact clumps of grid cells to processors. Each grid cell has a “weight” in this algorithm so that each processor is assigned an equal total weight of grid cells, as nearly as possible.

	If the weight argument is specified as cell, then the weight for each grid cell is 1.0, so that each processor will end up with an equal number of grid cells.

	If the weight argument is specified as part, than the weight for each grid cell is the number of particles it currently owns, so that each processor will end up with an equal number of particles.

	If the weight argument is specified as time, then timers are used to estimate the cost of each grid cell. The cost from the timers is given on a per processor basis, and then assigned to grid cells by weighting by the relative number of particles in the grid cells. If no timing data has yet been collected at the point in a script where this command is issued, a cell style weight will be used instead of time. A small warmup run (for example 100 timesteps) can be used before the balance command so that timer data is available. The number of timesteps Nfreq between balancing steps also needs to be large enough to give reliable timings. The timers used for balancing tally time from the move, sort, collide, and modify portions of each timestep.

Here is an example of an RCB partitioning for 24 processors, of a 2d hierarchical grid with 5 levels, refined around a tilted ellipsoidal surface object (outlined in pink). This is for a weight cell setting, yielding an equal number of grid cells per processor. Each processor is assigned a different color of grid cells. (Note that less colors than processors were used, so the disjoint yellow cells actually belong to three different processors). This is an example of a clumped distribution where each processor’s assigned cells can be compactly bounded by a rectangle. Click for a larger version of the image.

[image: image0]

The optional keywords axes and flip only apply to the rcb style.
Otherwise they are ignored.

The axes keyword allows limiting the partitioning created by the RCB
algorithm to a subset of dimensions. The default is to allow cuts in all
dimension, e.g. x,y,z for 3d simulations. The dims value is a string
with 1, 2, or 3 characters. The characters must be one of “x”, “y”, or
“z”. They can be in any order and must be unique. For example, in 3d, a
dims = xz would only partition the 3d grid only in the x and z
dimensions.

The flip keyword is useful for debugging. If it is set to yes then
each time an RCB partitioning is done, the coordinates of grid cells
will (internally only) undergo a sign flip to insure that the new owner
of each grid cell is a different processor than the previous owner, at
least when more than a few processors are used. This will insure all
particle and grid data moves to new processors, fully exercising the
rebalancing code.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which is the imbalance factor after
the most recent rebalance and a global vector of length 2 with
additional information about the most recent rebalancing. The 2 values
in the vector are as follows:

	1 = max # of particles per processor

	2 = imbalance factor before the last rebalance was performed

As explained above, the imbalance factor is the ratio of the maximum
number of particles on any processor to the average number of particles
per processor. For the rcb style’s time option, the imbalance factor
after the most recent rebalance cannot be computed and 0.0 is returned
for the global scalar value.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

create_grid command,
balance_grid command

Default:

none

fix emit/face command

fix emit/face/kk command

Syntax:

fix ID emit/face mix-ID face1 face2 ... keyword value(s) ...

	ID is documented in fix command

	emit/face = style name of this fix command

	mix-ID = ID of mixture to use when creating particles

	face1,face2,… = one or more of all or xlo or xhi or ylo or
yhi or zlo or zhi

	zero or more keyword/value(s) pairs may be appended

	keyword = n or nevery or perspecies or region or subsonic or twopass

	n value = Np

	Np = number of particles to create

	nevery value = Nstep

	Add particles every this many timesteps

	perspecies value

	value = yes or no

	region value = region-ID

	ID of the region

	subsonic values = Psub Tsub

	
	Psub = pressure setting at inflow boundary (pressure units)

	Tsub = temperature setting at inflow boundary, can be NULL (temperature units)

	twopass values = none

	none is the only possible value

Examples:

fix in emit/face air all
fix in emit/face mymix xlo yhi n 1000 nevery 10 region circle
fix in emit/face air xlo subsonic 0.1 300
fix in emit/face air xhi subsonic 0.05 NULL twopass

Description:

Emit particles from one or more faces of the simulation box,
continuously during a simulation. If invoked every timestep, this fix
creates a continuous influx of particles thru the face(s).

The properties of the added particles are determined by the mixture with
ID mix-ID. This sets the number and species of added particles, as
well as their streaming velocity, thermal temperature, and internal
energy modes. The details are explained below.

One or more faces of the simulation box can be specified via the
face1, face2, etc arguments. The 6 possible faces can be specified
as xlo, xhi, ylo, yhi, zlo, or zhi. Specifying all is the
same as specifying all 6 individual faces.

On each insertion timestep, each grid cell with one or more of its faces
touching a specified boundary face performs the following computations
to add particles. The particles are added at the beginning of the SPARTA
timestep.

The molecular flux across a grid cell face per unit time is given by
equation 4.22 of [Bird94]. The number of particles M to
insert on a particular grid cell face is based on this flux and
additional global, flow, and cell face properties:

	global property: fnum ratio as specified by the
global command

	flow properties: number density, streaming velocity, and thermal
temperature

	cell face properties: area of face and its orientation relative to
the streaming velocity

The flow properties are defined for the specified mixture via the
mixture command.

If M has a fractional value, e.g. 12.5, then 12 particles are added,
and a 13th depending on the value of a random number. Each particle is
added at a random location on the grid cell face. The particle species
is chosen randomly in accord with the frac settings of the collection
of species in the mixture, as set by the mixture command
command.

Important

The preceeding calculation is actually done using face areas associated with weighted cell volumes. Grid cells can be weighted using the global weight command.

The velocity of the particle is set to the sum of the streaming velocity
and a thermal velocity sampled from the thermal temperature. The
internal energy modes of the particle are determined by the trot and
tvib settings of the mixture and the rotate and vibrate options of
the collide_modify command. Note that if the
collide command has not been specified (free
molecular flow), then no rotational or vibrational energy will be
assigned to created particles.

If the final particle velocity is not directed “into” the grid cell,
then the velocity sampling procedure is repeated until it is. This
insures that all added particles enter the simulation domain, as
desired.

The first timestep that added particles are advected, they move for a
random fraction of the timestep. This insures a continuous flow field of
particles entering the simulation box.

Keywords

	The n keyword

	can alter how many particles are added, which can be useful for debugging purposes.
- If Np is set to 0, then the number of added particles is a function of fnum, nrho, and other mixture settings, as described above.
- If Np is set to a value > 0, then the fnum and nrho settings are ignored, and exactly Np particles are added on each insertion timestep. This is done by dividing Np by the total number of grid cells that are adjacent to the specified box faces and adding an equal number of particles per grid cell.

	The nevery keyword

	determines how often particles are added.
If Nstep > 1, this may give a non-continuous, clumpy distribution in the inlet flow field.

	The perspecies keyword

	determines how the species of each added particle is randomly determined. This has an effect on the statistical properties of added particles.

	If perspecies is set to yes, then a target insertion number M in a grid cell is calculated for each species, which is a function of the relative number fraction of the species, as set by the mixture nfrac command. If M has a fractional value, e.g. 12.5, then 12 particles of that species will always be added, and a 13th depending on the value of a random number.

	If perspecies is set to no, then a single target insertion number M in a grid cell is calculated for all the species. Each time a particle is added, a random number is used to choose the species of the particle, based on the relative number fractions of all the species in the mixture. As before, if M has a fractional value, e.g. 12.5, then 12 particles will always be added, and a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two options.
Assume a mixture with 2 species, each with a relative number fraction of 0.5.
Assume a particular grid cell adds 10 particles from that mixture.
If perspecies is set to yes, then exactly 5 particles of each species will be added on every timestep insertions take place.
If perspecies is set to no, then exactly 10 particles will be added every time and on average there will be 5 particles of each of the two species. But on one timestep it might be 6 of the first and 4 of the second. On another timestep it might be 3 of the first and 7 of the second.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This can be used to only
allow particle insertion on a subset of the boundary face. Note that the
side option for the region command can be used to
define whether the inside or outside of the geometric region is
considered to be “in” the region.

Important

If the region and n keywords are used together, less than N particles may be added on an insertion timestep. This is because grid cells will be candidates for particle insertion, unless they are entirely outside the bounding box that encloses the region. Particles those grid cells attempt to add are included in the count for N, even if some or all of the particle insertions are rejected due to not being inside the region.

	The subsonic keyword

	uses the method of Fang and Liou [Fang02] to determine the number of particles to insert in each grid cell on the emitting face(s).
They used the method of characteristics to calculate the mean properties of the incoming molecular flux, so that the prescribed pressure condition is achieved.
These properties are then applied to calculate the molecular flux across a grid cell face per unit time, as given by equation 4.22 of [Bird94].

This keyword allows specification of both the pressure and temperature
at the boundary or just the pressure (by specifying the temperature as
NULL). If specified, the temperature must be > 0.0. Currently,
instantaneous values for the density, temperature, and stream velocity
of particles in the cells adjacent to the boundary face(s) are computed
and used to determine the properties of inserted particles on each
timestep.

Warning

Caution must be exercised when using the subsonic boundary condition without specifying an inlet temperature. In this case the code tries to estimate the temperature of the flow from the properties of the particles in the domain. If the domain contains few particles per cell it may lead to spurious results. This boundary condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells are adequately populated.

Important

When using this keyword, you should also use an appropriate boundary collision or chemistry model via the boundary or bound_modify or surf_collide or surf_react commands, so that particles hitting the surface disappear as if they were exiting the simulation domain. That is necessary to produce the correct subsonic conditions that the particle insertions due to this command are trying to achieve.

	The twopass keyword

	does not require a value. If used, the insertion procedure will loop over the insertion grid cells twice, the same as the KOKKOS package version of this fix does, so that it can reallocate memory efficiently, e.g. on a GPU.
If this keyword is used the non-KOKKOS and KOKKOS version will generate exactly the same set of particles, which makes debugging easier. If the keyword is not used, the non-KOKKOS and KOKKOS runs will use random numbers differently and thus generate different particles, though they will be statistically similar.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by
various output commands. The first element of the vector is the total
number of particles added on the most recent insertion step. The second
element is the cummulative total number added since the beginning of the
run. The 2nd value is initialized to zero each time a run is performed.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

	Particles cannot be emitted from periodic faces of the simulation box. Particles cannot be emitted from z faces of the simulation box for a 2d simulation.

	A n setting of Np > 0 can only be used with a perspecies setting of no.

	A warning will be issued if a specified face has an inward normal in a direction opposing the streaming velocity. Particles will still be emitted from that face, so long as a small fraction have a thermal velocity large enough to overcome the outward streaming velocity, so that their net velocity is inward. The threshold for this is that a thermal velocity 3 sigmas from the mean thermal velocity is large enough to overcome the outward streaming velocity and produce a net velocity into the simulation box.

Related commands:

mixture,
create_particles,
fix emit/face/file

Default:

The keyword defaults are n = 0, nevery = 1, perspecies = yes, region = none, no subsonic settings, no twopass setting.

	Fang02

	
	Fang and W. W. Liou, Microfluid Flow Computations Using a Parallel DSMC Code, AIAA 2002-1057. (2002).

fix emit/face/file command

Syntax:

fix ID emit/face/file mix-ID face filename boundary-ID keyword value ...

	ID is documented in fix command

	emit/face/file = style name of this fix command

	mix-ID = ID of mixture to use when creating particles

	face = xlo or xhi or ylo or yhi or zlo or zhi

	filename = input data file with boundary values for the emission

	boundary-ID = section of data file to read

	zero or more keyword/value pairs may be appended

	keyword = frac or nevery or perspecies or region

	frac value = fraction = 0.0 to 1.0 fraction of particles to insert

	nevery value = Nstep = insert every this many timesteps

	perspecies value = yes or no

	region value = region-ID

Examples:

fix in emit/face/file air xlo input.data xlo
fix in emit/face/file mymix ylo file.txt oneface frac 0.1 nevery 10

Description:

Emit particles from a face of the simulation box, continuously during a
simulation. The particles are added using properties of the specified
mixture and values read from an input file that can override those
properties. The input file can thus be used to create an influx of
particles that varies spatially over the surface of the face. This can
be useful, for example, to model an object inserted into a plume flow
where the flow has spatially varying properties. If invoked every
timestep, this fix creates a continuous influx of particles thru the
face.

The properties of the added particles are determined by the mixture with
ID mix-ID and the input file. Together they set the number and species
of added particles, as well as their streaming velocity, thermal
temperature, and internal energy modes. Settings for a subsonic pressure
boundary condition is also allowed. The details are explained below.

Only one face of the simulation box can be specified via the face
argument. The 6 possible faces are xlo, xhi, ylo, yhi, zlo, or
zhi. This command can be used multiple times to add particles on
multiple faces.

On each insertion timestep, each grid cell with a face touching the
specified boundary face performs the following computations to add
particles. The particles are added at the beginning of the SPARTA
timestep.

The molecular flux across a grid cell face per unit time is given by
equation 4.22 of [Bird94]. The number of particles M to
add on a particular grid cell face is based on this flux and additional
global, flow, and cell face properties:

	global property: fnum ratio as specified by the
global command

	flow properties: number density, streaming velocity, and thermal
temperature

	cell face properties: area of face and its orientation relative to
the streaming velocity

The flow properties are defined for the specified mixture via the
mixture command. Any or all them can be overridden by
values in the input data file, which affect individual grid cells as
described below.

If M has a fractional value, e.g. 12.5, then 12 particles are added,
and a 13th depending on the value of a random number. Each particle is
added at a random location on the grid cell face. The particle species
is chosen randomly in accord with the frac settings of the collection
of species in the mixture, as set by the mixture
command. These can also be overridden by spatially varying number
fraction values in the input data file, as described below.

The velocity of the particle is set to the sum of the streaming velocity
and a thermal velocity sampled from the thermal temperature. The
internal energy modes of the particle are determined by the trot and
tvib settings and the rotate and vibrate options of the
collide_modify command. Note that if the
collide command has not been specified (free
molecular flow), then no rotational or vibrational energy will be
assigned to created particles.

If the final particle velocity is not directed “into” the grid cell,
then the velocity sampling procedure is repeated until it is. This
insures that all added particles enter the simulation domain, as
desired.

The first timestep that added particles are advected, they move for a
random fraction of the timestep. This insures a continuous flow field of
particles entering the simulation box.

For 3d simulations, the input data file defines a 2d mesh of data points
which conceptually overlays some portion or all of the specified face of
the simulation box. For a 2d simulation, a 1d mesh is defined. The mesh
is topologically regular, but can have uniform or non-uniform spacing in
each of its two or one dimensions (for 3d or 2d problems). One or more
values can be defined at every mesh point, which override any of the
mixture settings defined by the mixture command.
These are the flow properties discussed above (number density, streaming
velocity, and thermal temperature), as well as the number fraction of
any species in the mixture. Any value not defined in the input data file
defaults to the mixture value.

For 3d simulations, a 2d mesh is defined in the file using I,J indices.
(The 1d mesh for 2d simulations is described below). I and J map to any
of the simulation box faces in this manner. A simulation box face has
two varying dimensions (e.g. ylo face = x and z dimensions). The I index
in the file corresponds to the “lowest” of these dimensions, where x < y
< z. The J index in the file corresponds to the higher. Thus for face
ylo, I = x and J = z. A low I or J value corresponds to a low x or z
value, regardless of whether the mapping is to the ylo or yhi face. A 1d
mesh for a 2d simulation is defined in an analogous manner, e.g. for
face xlo, I = y.

For a 3d simulation, interpolation from values on the 2d mesh to any
grid cell face that is on the corresponding simulation box face is done
in the following manner. There are 3 cases to consider.

	For a grid cell face that is entirely inside the area defined by the file mesh, the centroid (center point) of the grid cell face is surrounded geometrically by 4 file mesh points.
The 4 values defined on those 4 file points are averaged in a weighted manner using bilinear interpolation (described below) to determine the value for the grid cell face.
This value is then used for the calculation described above for M = the number of particles to add on the cell face as well as the properties of the added particles.

	For a grid cell face that is entirely outside the area defined by the file mesh, no particles are added in that grid cell.

	For a grid cell face that partially overlaps the area defined by the file mesh, the extent of the overlap is computed.
The centroid (center point) of the overlap area is surrounded geometrically by 4 file mesh points. The values for those 4 points are used as in (a) above to determine properties of particles added in that grid cell.
Note that the area of insertion, used to calculate M, is the overlap area, which is smaller than the grid cell face area. Also, particles are only added within the overlap area of the grid cell face.

For a 2d simulation, the 3 cases are similar, except for (a) and (c) the
centroid is the midpoint of a line segment, the centroid is surrounded
by 2 file mesh points, and linear interpolation (described below) is
performed to determine the value for the grid face.

The format of the input data file is a series of one or more sections,
defined as follows (without the parenthesized comments). Note that one
file can contain many sections, each with a different set of tabulated
values. The sections can be a mix of 2d and 3d formats. SPARTA reads the
file section by section, skipping sections with non-matching boundary
IDs, until it finds one that matches the specified boundary-ID. The
lines that follow must be in this order:

plume ABC info (one or more comment or blank lines)

PLUME_ABC (boundary-ID is first word on line)
NIJ 4 10 (mesh size: Ni by Nj)
NV 3 (Nv = number of values per mesh point)
VALUES nrho temp Ar (list of Nv values per mesh point)
IMESH 0.0 0.3 0.9 1.0 (mesh coordinates in I direction)
JMESH ... (mesh coordinates in J direction)
 (blank)
1 1 1.0 300.0 0.5 (I, J, value1, value2, ...)
1 2 1.02 310.0 0.5
...
4 10 3.0 400.0 0.7

This format is for a 3d simulation. For a 2d simulation, there are 3
changes:

	“NIJ 4 10” is replaced by “NI 6”

	JMESH line is not included

	“I,J,value1,…” is replaced by “I,value1,…”

A section begins with a non-blank line whose first character is not a
“#”. Blank lines or lines starting with “#” can be used as comments
between sections. The first line begins with a boundary-ID which
identifies the section. The line can contain additional text, but the
initial text must match the boundary-ID specified in the fix
emit/face/file command. Otherwise the section is skipped.

The VALUES line lists Nv keywords. The list of possible keywords is as
follows, along with the meaning of the numeric value specified for the
mesh point:

	nrho = number density

	vx,vy,vz = 3 components of streaming velocity

	temp = thermal temperature

	trot = rotational temperature

	tvib = vibrational temperature

	press = pressure for subsonic boundary condition

	species = number fraction of any species in the mixture

The IMESH and JMESH lines must list values that are monotonically
increasing.

Following a blank line, the next N = Ni x Nj lines (or N = Ni lines for
a 2d simulation) list the tabulated values. The format of each line is
I,J followed by Nv values. The N lines can be in any order, but all
unique I,J (or I for 2d) indices must be listed.

Note that if number fractions are specified for one or more species in
the mixture, then they override number fraction values for the mixture
itself, as set by the mixture command. However, for
each grid cell, the rule that the number fraction of all species in the
mixture must sum to 1.0 is enforced, just as it is for the mixture. This
means that number fractions of species not specified in the file or in
the mixture may be reset (for that grid cell) to insure the sum = 1.0,
as explained on the mixture command doc page. If this
cannot be done, an error will be generated.

If the press keyword is used, this means a subsonic pressure boundary
condition is used for the face, similar to how the subsonic keyword is
used for the fix emit/face command. If just the
press keyword is specified, but not the temp keyword, then it is
similar to the “subsonic press NULL” setting for the fix emit/face command. If both keywords are used it
is similar to the “subsonic press temp” setting for the fix emit/face command. The difference with this
command is that both the press and temp values can be vary spatially
across the box face, like the other keyword values.

The subsonic pressure boundary condition is uses the method of Fang and
Liou [Fang02] to determine the number of particles to
insert in each grid cell on the emitting face(s). They used the method
of characteristics to calculate the mean properties of the incoming
molecular flux, so that the prescribed pressure condition is achieved.
These properties are then applied to calculate the molecular flux across
a grid cell face per unit time, as given by equation 4.22 of
[Bird94].

As explained above the input data file can specify both the pressure and
temperature at the boundary or just the pressure. If specified, the
temperature must be > 0.0. Currently, instantaneous values for the
density, temperature, and stream velocity of particles in the cells
adjacent to the boundary face(s) are computed and used to determine the
properties of inserted particles on each timestep.

Important

Caution must be exercised when using the subsonic boundary condition without specifying an inlet temperature.
In this case the code tries to estimate the temperature of the flow from the properties of the particles in the domain.
If the domain contains few particles per cell it may lead to spurious results. This boundary condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells are adequately populated.

Important

When using a subsonic pressure boundary condition, you should also use an appropriate boundary collision or chemistry model via the boundary or bound_modify or surf_collide or surf_react commands, so that particles hitting the surface disappear as if they were exiting the simulation domain.
That is necessary to produce the correct subsonic conditions that the particle insertions due to this command are trying to achieve.

For 3d simulations, bilinear interpolation from the 2d mesh of values
specified in the file is performed using this equation to calculate the
value at the centroid point (i,j) in the grid cell face:

\[\begin{split}f(i,j) = (1/area) (f(i1,j1) (i2-i) (j2-j) + f(i2,j1) (i-i1) (j2-j) +\\
 f(i2,j2) (i-i1) (j-j1) + f(i1,j2) (i2-i) (j-j1))\end{split}\]

where the 4 surrounding file mesh points are (i1,j1), (i2,j1), (i2,j2),
and (i1,j2). The 4 f() values on the right-hand side are the values
defined at the file mesh points. The sum is normalized by the area of
the overlap between the grid cell face and file mesh.

For 2d simulations, linear interpolation from the 1d mesh of values
specified in the file is performed using this equation to calculate the
value at the centroid poitn (i) in the grid cell line:

\[\begin{split}f(i) = (1/length) (f(i1) (i2-i) + f(i2) (i-i1) \\
 = f(i1) + (i - i1)/(i2 - i1) (f(i2) - f(i1))\end{split}\]

where the 2 surrounding file mesh points are (i1) and (i2). The 2 f()
values on the right-hand side are the values defined at the file mesh
points. The sum is normalized by the length of the overlap between the
grid cell line and file mesh.

The frac keyword can alter how many particles are added, which can be
useful for debugging purposes. If frac is set to 1.0 (the default)
then the number of particles added is the sum of the M values computed
for each grid cell that overlaps with the mesh defined in the file, as
described above. If frac < 1.0 then M is scaled by frac to determine
the number of particles added in each grid cell. Thus a simulation with
less particles can easily be run to test if it is setup correctly.

The nevery keyword determines how often particles are added. If
Nstep > 1, this may give a non-continuous, clumpy distribution in the
inlet flow field.

The perspecies keyword determines how the species of each added
particle is randomly determined. This has an effect on the statistical
properties of added particles.

If perspecies is set to yes, then a target insertion number M in a
grid cell is calculated for each species, which is a function of the
relative number fraction of the species, as set by the mixture nfrac command. If M has a fractional value, e.g.
12.5, then 12 particles of that species will always be added, and a 13th
depending on the value of a random number.

If perspecies is set to no, then a single target insertion number
M in a grid cell is calculated for all the species. Each time a
particle is added, a random number is used to choose the species of the
particle, based on the relative number fractions of all the species in
the mixture. As before, if M has a fractional value, e.g. 12.5, then
12 particles will always be added, and a 13th depending on the value of
a random number.

Here is a simple example that illustrates the difference between the two
options. Assume a mixture with 2 species, each with a relative number
fraction of 0.5. Assume a particular grid cell adds 10 particles from
that mixture. If perspecies is set to yes, then exactly 5 particles
of each species will be added on every timestep insertions take place.
If perspecies is set to no, then exactly 10 particles will be added
every time and on average there will be 5 particles of each of the two
species. But on one timestep it might be 6 of the first and 4 of the
second. On another timestep it might be 3 of the first and 7 of the
second.

If the region keyword is used, then a particle will only added if its
position is within the specified region-ID. This can be used to only
allow particle insertion on a subset of the boundary face. Note that the
side option for the region command can be used to
define whether the inside or outside of the geometric region is
considered to be “in” the region.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by
various output commands. The first element of the vector is the total
number of particles added on the most recent insertion step. The second
element is the cummulative total number added since the beginning of the
run. The 2nd value is initialized to zero each time a run is performed.

Restrictions:

Particles cannot be added on periodic faces of the simulation box.
Particles cannot be added on z faces of the simluation box for a 2d
simulation.

Unlike the fix emit/face command, no warning is
issued if the specified emission face has an inward normal in a
direction opposing the streaming velocity, as defined by the mixture.
This is because the streaming velocity as defined by the specified
mixture may be overridden by values in the file.

For that grid cell, particles will still be emitted from that face, so
long as a small fraction have a thermal velocity large enough to
overcome the outward streaming velocity, so that their net velocity is
inward. The threshold for this is the thermal velocity for particles
3*sigma from the mean thermal velocity.

Related commands:

mixture command,
create_particles command,
fix emit/face command

Default:

The keyword defaults are frac = 1.0, nevery = 1, perspecies = yes,
region = none.

fix emit/surf command

Syntax:

fix ID emit/surf mix-ID group-ID keyword value ...

	ID is documented in fix command

	emit/surf = style name of this fix command

	mix-ID = ID of mixture to use when creating particles

	group-ID = ID of surface group that emits particles

	zero or more keyword/value pairs may be appended

	keyword = n or normal or nevery or perspecies or region or
subsonic

n value = Np = number of particles to create
normal value = yes or no = emit normal to surface elements or with streaming velocity
nevery value = Nstep = add particles every this many timesteps
perspecies value = yes or no
region value = region-ID
subsonic values = Psub Tsub
 Psub = pressure setting at inflow boundary (pressure units)
 Tsub = temperature setting at inflow boundary, can be NULL (temperature units)

Examples:

fix in emit/surf air all
fix in emit/face mymix myPatch region circle normal yes
fix in emit/surf air all subsonic 0.1 300
fix in emit/surf air all subsonic 0.05 NULL

Description:

Emit particles from a group of surface elements, continuously during a
simulation. If invoked every timestep, this fix creates a continuous
outflux of particles from the surface elements in the group.

The properties of the added particles are determined by the mixture with
ID mix-ID. This sets the number and species of added particles, as
well as their streaming velocity, thermal temperature, and internal
energy modes. The details are explained below.

Which surface elements emit particles is specified by the group-ID for
a surface group, which defines a set of surface elements. The group surf is used to define surface groups.

On each insertion timestep, each grid cell that overlaps with one or
more emitting surface elements performs the following computations to
add particles for each grid cell/surface element pairing. The particles
are added at the beginning of the SPARTA timestep.

The molecular flux emitted from a surface element per unit time is given
by equation 4.22 of [Bird94]. The number of particles M
to insert on the portion of a surface element that is contained within a
grid cell is based on this flux and additional global, flow, and surface
element properties:

	global property: fnum ratio as specified by the
global command

	flow properties: number density, streaming velocity, and thermal
temperature

	surface element properties: portion of surface element area that
overlaps with the grid cell and its orientation relative to the
streaming velocity

The flow properties are defined for the specified mixture via the
mixture command.

If M has a fractional value, e.g. 12.5, then 12 particles are added,
and a 13th depending on the value of a random number. Each particle is
added at a random location within the portion of the surface element
that overlaps with the grid cell. The particle species is chosen
randomly in accord with the frac settings of the collection of species
in the mixture, as set by the mixture command.

Important

The preceeding calculation is actually done using surface element areas associated with weighted cell volumes.
Grid cells can be weighted using the global weight command.

The velocity of the particle is set to the sum of the streaming velocity
and a thermal velocity sampled from the thermal temperature. The
internal energy modes of the particle are determined by the trot and
tvib settings of the mixture and the rotate and vibrate options of
the collide_modify command. Note that if the
collide command has not been specified (free
molecular flow), then no rotational or vibrational energy will be
assigned to created particles. See the discussion of the normal
keyword below for a way to change the velocity assignment to be oriented
in the direction normal to the surface element, rather than in the
direction of the streaming velocity.

If the final particle velocity is not directed “out of” the surface
element, then the velocity sampling procedure is repeated until it is.
This insures that all added particles emit from the surface element, as
desired.

The first timestep that added particles are advected, they move for a
random fraction of the timestep. This insures a continuous flow field of
particles emitting from each surface element.

The n keyword can alter how many particles are added, which can be
useful for debugging purposes. If Np is set to 0, then the number of
added particles is a function of fnum, nrho, and other mixture
settings, as described above. If Np is set to a value > 0, then the
fnum and nrho settings are ignored, and exactly Np particles are
added on each insertion timestep. This is done by dividing Np by the
total number of grid cell/surface element pairs and adding an equal
number of particles per pair.

The normal keyword can be used to alter how velocities are set for
added particles. If normal is set to no, then a particle’s velocity
is set as described above, using the mixture’s streaming velocity
superposed with a thermal velocity sampled from the temperature of the
mixture. Note that the same streaming velocity is used for all emitting
surface elements, regardless of their orientation with respect to the
streaming velocity. If normal is set to yes, then each surface
element is assigned its own “streaming” velocity in the following
manner. The streaming velocity points in the direction of the outward
normal of the surface element, and its magnitude is set to the magnitude
of the mixture’s streaming velocity. A velocity is then assigned to the
particle in the same manner as before. It is assigned the outward
streaming velocity superposed with a thermal velocity sampled fromt he
temperature of the mixture. The effect is that particles effectively
stream outward from each emitting surface element.

The nevery keyword determines how often particles are added. If
Nstep > 1, this may give a non-continuous, clumpy distribution in the
inlet flow field.

The perspecies keyword determines how the species of each added
particle is randomly determined. This has an effect on the statistical
properties of added particles.

If perspecies is set to yes, then a target insertion number M for
a grid cell/surface element pair is calculated for each species, which
is a function of the relative number fraction of the species, as set by
the mixture nfrac command. If M has a fractional
value, e.g. 12.5, then 12 particles of that species will always be
added, and a 13th depending on the value of a random number.

If perspecies is set to no, then a single target insertion number
M for a grid cell/surface element pair is calculated for all the
species. Each time a particle is added, a random number is used to
choose the species of the particle, based on the relative number
fractions of all the species in the mixture. As before, if M has a
fractional value, e.g. 12.5, then 12 particles will always be added, and
a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two
options. Assume a mixture with 2 species, each with a relative number
fraction of 0.5. Assume a particular grid cell/surface element pair adds
10 particles from that mixture. If perspecies is set to yes, then
exactly 5 particles of each species will be added on every timestep
insertions take place. If perspecies is set to no, then exactly 10
particles will be added every time and on average there will be 5
particles of each of the two species. But on one timestep it might be 6
of the first and 4 of the second. On another timestep it might be 3 of
the first and 7 of the second.

If the region keyword is used, then a particle will only added if its
position is within the specified region-ID. This can be used to only
allow particle insertion on a subset of the collective area of the
specified group of surface elements. Note that the side option for the
region command can be used to define whether the
inside or outside of the geometric region is considered to be “in” the
region.

IMPORTANT NOTE: If the region and n keywords are used together, less
than N particles may be added on an insertion timestep. This is because
grid cell/suface element pairs will be candidates for particle
insertion, unless the grid cell is entirely outside the bounding box
that encloses the region. Particles those grid cell/surface element
pairs will attempt to add are included in the count for N, even if some
or all of the particle insertions are rejected due to not being inside
the region.

The subsonic keyword uses the method of Fang and Liou
[Fang02] to determine the number of particles to insert in
each grid cell on the emitting face(s). They used the method of
characteristics to calculate the mean properties of the incoming
molecular flux, so that the prescribed pressure condition is achieved.
These properties are then applied to calculate the molecular flux across
a grid cell face per unit time, as given by equation 4.22 of
[Bird94]

This keyword allows specification of both the pressure and temperature
at the surface or just the pressure (by specifying the temperature as
NULL). If specified, the temperature must be > 0.0. Currently,
instantaneous values for the density, temperature, and stream velocity
of particles in the cells containing the surface elements are computed
and used to determine the properties of inserted particles on each
timestep.

IMPORTANT NOTE: Caution must be exercised when using the subsonic
boundary condition without specifying an inlet temperature. In this case
the code tries to estimate the temperature of the flow from the
properties of the particles in the domain. If the domain contains few
particles per cell it may lead to spurious results. This boundary
condition is meant more for an outlet than an inlet boundary condition,
and performs well in cases where the cells are adequately populated.

IMPORTANT NOTE: When using this keyword, you should also use an
appropriate surface collision or chemistry model via the
surf_collide or surf_react
commands, so that particles hitting the surface disappear as if they
were exiting the simulation domain. That is necessary to produce the
correct subsonic conditions that the particle insertions due to this
command are trying to achieve.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by
various output commands. The first element of the vector is the total
number of particles added on the most recent insertion step. The second
element is the cummulative total number added since the beginning of the
run. The 2nd value is initialized to zero each time a run is performed.

Restrictions:

A n setting of Np > 0 can only be used with a perspecies setting
of no.

If normal is set to no, which is the default, then unlike the
fix emit/face command, no warning is issued if a surface
element has an inward normal in a direction opposing the streaming
velocity, as defined by the mixture.

For that surface element, particles will still be emitted, so long as a
small fraction have a thermal velocity large enough to overcome the
outward streaming velocity, so that their net velocity is inward. The
threshold for this is the thermal velocity for particles 3*sigma from
the mean thermal velocity.

Related commands:

mixture,
create_particles, fix emit/face

Default:

The keyword defaults are n = 0, normal = no, nevery = 1, perspecies =
yes, region = none, no subsonic settings.

fix grid/check command

fix grid/check/kk command

Syntax:

fix ID grid/check N outflag keyword arg ...

	ID is documented in fix command

	grid/check = style name of this fix command

	N = check every N timesteps

	outflag = error or warn or silent

	zero or more keyword/args pairs may be appended

	keyword = outside

outside arg = yes or no

Examples:

fix 1 grid/check 100 error

Description:

Check if particles are inside the grid cell they are supposed to be,
based on their current coordinates. This is useful as a debugging check
to insure that no particles have been assigned to the incorrect grid
cell during the particle move stage of the SPARTA timestepping
algorithm.

The check is performed once every N timesteps. Particles not inside
the correct grid cell are counted and the value of the count can be
monitored (see below). A value of 0 is “correct”, meaning that no
particle was found outside its assigned grid cell.

If the outside keyword is set to yes, then a check for particles
inside implicit surfaces is also performed. If a particle is in a grid
cell with implicit surface elements and the particles is “inside” the
surfaces (which have possibly ablated), then the error count is
incremented.

If the outflag setting is error, SPARTA will print an error and stop
if it finds a particle in an incorrect grid cell or inside the implicit
surface elements. For warn, it will print a warning message and
continue. For silent, it will print no message, but the count of such
occurrences can be monitored as described below, e.g. by outputting the
value with the stats command.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which can be accessed by various
output commands. The scalar is the count of how many particles were not
in the correct grid cell. The count is cummulative over all the
timesteps the check was performed since the start of the run. It is
initialized to zero each time a run is performed.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

none

Default:

The option default is outside = no.

fix move/surf command

fix move/surf/kk command

Syntax:

fix ID move/surf groupID Nevery Nlarge args ...

	ID is documented in fix command

	move/surf = style name of this fix command

	group-ID = group ID for which surface elements to move

	Nevery = move surfaces incrementally every this many steps

	Nlarge = move surfaces the entire distance after this many timesteps

	args = all remaining args are identical to those defined for the
move_surf command starting with its “style”
argument

Examples:

fix 1 move/surf all 100 1000 trans 1 0 0
fix 1 move/surf partial 100 10000 rotate 360 0 0 1 5 5 0 connect yes
fix 1 move/surf object2 100 50000 rotate 360 0 0 1 5 5 0

Description:

This command performs on-the-fly movement of all the surface elements in
the specfied group via one of several styles. See the group surf command for info on how surface elements can be
assigned to surface groups. Surface element moves can also be performed
before or between simulations by using the
move_surf command.

Moving surfaces during a simulation run can be useful if you want to to
track transient changes in a flow while some attribute of the surface
elements change, e.g. the separation between two spheres.

All of the command arguments which appear after Nlarge, which
determine how surface elements move, are exactly the same as for the
move_surf command, starting with its style
argument. This includes optional keywords it defines. See its doc page
for details.

Nevery specifies how often surface elements are moved incrementally
along the path towards their final position. The current timestep must
be a multiple of Nevery.

Nlarge must be a multiple of Nevery and specifies how long it will
take the surface elements to move to their final position.

Thus if Nlarge = 100*Nevery, each surface elements will move
1/100 of its total distance every Nevery steps.

The same rules that the move_surf command follows
for particle deletion after surface elements move, are followed by this
command as well. The criteria are applied after every incremental move.
This is to prevent particles from ending up inside surface objects.

Likewise, the connect option of the move_surf
command should be used in the same manner by this command if you need to
insure that moving only some elements of an object do not result in a
non-watertight surface grid.

Restart, output info:

No information about this fix is written to binary restart files. No global or per-particle or per-grid
quantities are stored by this fix for access by various output commands.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

An error will be generated if any surface element vertex is moved
outside the simulation box.

Related commands:

read_surf command,
move_surf command,
remove_surf command

Default:

none

fix print command

Syntax:

fix ID print N string keyword value ...

	ID is documented in fix command

	print = style name of this fix command

	N = print every N steps

	string = text string to print with optional variable names

	zero or more keyword/value pairs may be appended

keyword = file or append or screen or title

	file value = filename

	append value = filename

	screen value = yes or no

	title value = string: text to print as 1st line of output file

Examples:

fix extra print 100 "Coords of marker particle = $x $y $z"
fix extra print 100 "Coords of marker particle = $x $y $z" file coord.txt

Description:

Print a text string every N steps during a simulation run. This can be
used for diagnostic purposes or as a debugging tool to monitor some
quantity during a run. The text string must be a single argument, so it
should be enclosed in quotes if it is more than one word. If it contains
variables it must be enclosed in quotes to insure they are not evaluated
when the input script line is read, but will instead be evaluated each
time the string is printed.

See the variable command for a description of
equal style variables which are the most useful ones to use with the
fix print command, since they are evaluated afresh each timestep that
the fix print line is output. Equal-style variables calculate formulas
involving mathematical operations, statistical properties, global values
calculated by a compute or fix, or
references to other variables.

If the file or append keyword is used, a filename is specified to
which the output generated by this fix will be written. If file is
used, then the filename is overwritten if it already exists. If append
is used, then the filename is appended to if it already exists, or
created if it does not exist.

If the screen keyword is used, output by this fix to the screen and
logfile can be turned on or off as desired.

The title keyword allow specification of the string that will be
printed as the first line of the output file, assuming the file
keyword was used. By default, the title line is as follows:

Fix print output for fix ID

where ID is replaced with the fix-ID.

Restart, output info:

No information about this fix is written to binary restart files. No global or per-particle or per-grid
quantities are stored by this fix for access by various output commands.

Restrictions:

none

Related commands:

variable command,
print command

Default:

The option defaults are no file output, screen = yes, and title string
as described above.

fix vibmode command

Syntax:

fix ID vibmode

	ID is documented in fix command

	vibmode = style name of this fix command

Examples:

fix 1 vibmode

Description:

Enable multiple vibrational energy levels, defined on a per-species
basis, to be used in a simulation. This fix is meant to be used with the
collide_modify vibrate discrete setting which
means that the vibrational energy of each (non-monoatomic) particle is
discretized across one or more energy modes, each with its own
characteristic vibrational temperature. This fix allocates per-particle
storage for the mode indices and also has code to populate the multiple
levels appropriately when particles are created. Collisions between
pairs of particles will then transfer energy between the different modes
of the two particles.

An overview of how to run simulations with multiple vibrational energy
modes is given in the Section 4.12.
This includes use of the species command with its
vibfile option, and the use of the collide_modify vibrate discrete command. The section also lists all
the commands that can be used in an input script to invoke various
options associated with the vibrational energy modes. All of them depend
on this fix vibmode command being defined.

Internally, this fix defines a custom particle attribute named
“vibmode”. It is an integer array with N values per particle. N is the
maximum number of energy modes for any species defined in the
simulation. The number of energy modes is half the vibrational degrees
of freedom defined for each species. See the “species” command for how
the degrees of freedom and associated vibrational temperatures and other
properties are defined for each mode for each species.

Each of the N values is an integer count for the

Restart, output info:

No information about this fix is written to binary restart files.

However, the values of the custom particle attribute defined by this fix
are written to the restart file. Namely the integer values stored in
“vibmode” for each particle. As explained on the
read_restart doc page these values can be
re-assigned to particles when a restart file is read, if a new fix
vibmode command is specified in the restart script before the first
run command is used.

No global or per-particle or per-grid quantities are stored by this fix
for access by various output commands.

However, the custom particle attributes defined by this fix can be
accessed by the dump particle command, as p_vibmode.
That means those per-particle values can be written to particle dump
files.

Restrictions:

This fix is required if “collide_modify vibrate discrete” is used and
there is one or more species defined which haave multiple vibrational
energy modes (2 or more). In this scenario, if it is not defined, an
error will occur when a “create_particles” or run command
is issued. Conversely, if no species has multiple vibrational modes,
this fix cannot be used.

Defining this fix after particles have been created will not populate
the vibrational energy modes of particles that already exist. An
exception is if the read_restart command is used
to read in particles from a previous simulation where this fix was used.
In that case, defining this fix after reading the restart file will
enable the particles to keep their previous vibrational energy mode
values.

Related commands:

collide modify vibrate discrete

Default:

none

global command

Syntax:

global keyword values ...

one or more keyword/value pairs

keyword = fnum or nrho or vstream or temp or gravity or surfs or surfgrid or surfmax or splitmax or surftally or surfpush or gridcut or comm/sort or comm/style or weight or particle/reorder or mem/limit

	fnum value = ratio of physical particles to simulation particles

	nrho value = density = number density of background gas (# per length^3 units)

	vstream values = Vx Vy Vz = streaming velocity of background gas (velocity units)

	temp values thermal = temperature of background gas (temperature units)

	gravity values = mag ex ey ez

	mag = magnitude of acceleration due to gravity (acceleration units)

	ex,ey,ez = direction vector that gravity acts in

	surfs value = explicit or explicit/distributed or implicit

	explicit = surfs defined in read_surf file, each proc owns copy of all surfs

	explicit/distributed = surfs defined in read_surf file, each proc owns only the surfs for its owned_ghost grid cells

	implicit = surfs defined in read_isurf file, each proc owns only the surfs for its owned+ghost grid cells surfgrid value = percell or persurf or auto

	surfgrid value = percell or persurf or auto

	percell = loop over my cells and check every surf

	persurf = loop over my surfs and cells they overlap

	auto = choose percell or persurf based on surface element and proc count

	surfmax value Nsurf = max # of surface elements allowed in single grid cell

	splitmax value Nsplit = max # of sub-cells one grid cell can be split into by surface elements

	surftally value = reduce or rvous or auto

	reduce = tally surf collision info via MPI_Allreduce operations

	rvous = tally via a rendezvous algorithm

	auto = choose reduce or rvous based on surface element and proc count

	surfpush value(s) no/yes or slo shi svalue

	no = do not push surface element points near cell surface

	yes = push surface element points near cell surface if necessary

	slo,shi = push points within this range

	svalue = push points to this value

	gridcut value cutoff = acquire ghost cells up to this far away (distance units)

	comm/sort value yes or no: sort incoming messages by proc ID if yes, else no sort

	comm/style value neigh or all

	neigh = setup particle comm with subset of near-neighbor processor

	all = allow particle comm with potentially any processor

	weight value wstyle mode

	wstyle = cell

	mode = none or volume or radius or radius/only

	particle/reorder value nsteps = reorder the particles every this many timesteps

	mem/limit value grid or bytes

	grid = limit extra memory for load-balancing, particle reordering, and restart file read/write to grid cell memory

	bytes = limit extra particle memory to this amount (in MBytes)

Examples:

global fnum 1.0e20
global vstream 100.0 0 0 fnum 5.0e18
global temp 1000
global weight cell radius
global mem/limit 100

Description:

Define global properties of the system.

	The fnum keyword

	sets the ratio of real, physical molecules to simulation particles. E.g. a value of 1.0e20 means that one particle in the simulation represents 1.0e20 molecules of the particle species.

	The nrho keyword

	sets the number density of the background gas. For 3d simulations the units are #/volume. For 2d, the units are effectively #/area since the z dimension is treated as having a length of 1.0.

Assuming your simulation is populated by particles from the background gas, the fnum and nrho settings can determine how many particles will be present in your simulation, when using the create_particles or fix emit command variants.

	The vstream keyword

	sets the streaming velocity of the background gas.

	The temp keyword

	sets the thermal temperature of the background gas. This is a Gaussian velocity distribution superposed on top of the streaming velocity.

	The gravity keyword

	sets an acceleration term which is included in the motion of particles. The magnitude of gravity is set by the mag keyword. Its direction of action is set as (ex,ey,ez). The direction does not have to be a unit vector. If the magnitude is set to 0.0, no acceleration term is included, which is the default.

	The surfs keyword

	determines what kind of surface elements SPARTA uses and how they are distributed across processors. Possible values are explicit, explicit/distributed, and implicit.

See the Section 6.13 for an explanation of explicit versus implicit surfaces. The distributed option can be important for models with huge numbers of surface elements. Each processor stores copies of only the surfaces that overlap grid cells it owns or has ghost copies of. Implicit surfaces are always distributed.

The explicit setting is the default and means each processor stores a copy of all the defined surface elements. Note that a surface element requires about 100 bytes of storage, so storing a million on a single processor requires about 100 MBytes.

	The surfgrid keyword

	determines what algorithm is used to enumerate the overlaps (intersections) between grid cells and surface elements (lines in 2d, triangles in 3d).

The possible settings are percell, persurf, and auto. The auto setting is the default and will choose between a percell or persurf algorithm based on the number of surface elements and processor count. If there are more processors than surface elements, the percell algorithm is used. Otherwise the persurf algorithm is used. The percell algorithm loops over the subset of grid cells each processor owns. All the surface elements are tested for overlap with each owned grid cell. The persurf algorithm loops over a 1/P fraction of surface elements on each processor. The bounding box around each surface is used to find all grid cells it possibly overlaps. For large numbers of surface elements or processors, the persurf algorithm is generally faster.

	The surfmax keyword

	determines the maximum number of surface elements (lines in 2d, triangles in 3d) that can overlap a single grid cell. The default is 100, which should be large enough for any simulation, unless you define very coarse grid cells relative to the size of surface elements they contain.

	The splitmax keyword

	determines the maximum number of sub-cells a single grid cell can be split into as a result of its intersection with multiple surface elements (lines in 2d, triangles in 3d). The default is 10, which should be large enough for any simulation, unless you embed a complex-shaped surface object into one or a very few grid cells.

	The surftally keyword

	determines what algorithm is used to combine tallies of surface collisions across processors that own portions of the same surface element. The possible settings are reduce, rvous, and auto. The auto setting is the default and will choose between a reduce or rvous algorithm based on the number of surface elements and processor count. If there are more processors than surface elements, the reduce algorithm is used. Otherwise the rvous algorithm is used.
The reduce algorithm is suitable for relatively small surface elememt counts. It creates a copy of a vector or array of length the global number of surface elements. Each processor sums its tally contributions into the vector or array. An MPI_Allreduce() is performed to sum it across all processors. Each processor than extracts values for the N/P surfaces it owns. The rvous algorithm is faster for large surface element counts. A rendezvous style of communication is performed where every processor sends its tally contributions directly to the processor which owns the element as one of its N/P elements.

	The surfpush keyword

	is only useful to use when SPARTA is having problems embedding a surface in the simulation grid, which occurs when when surface elements are defined via the read_surf command. Or for debugging purposes.

In rare cases, if a surface element point is just slightly inside or outside a grid cell, but within an epsilon distance from the surface of the grid cell, a numerical round-off error can occur when computing the cut volume. The error can be avoided if such points are shifted (pushed) to a slightly different location, which only induces a tiny change in the computed cut volume. By default the surfpush keyword is set to yes, which will perform this “push” operation on a grid cell if the numerical issue is flagged. SPARTA prints out how many grid cells needed this push operation.

If you set surfpush to no, then the push operation is not performed, which will result in an error if the numerical issue occurs.

If the default surfpush yes still gives an error, then setting the slo, shi, and svalue allows experimentation with a different mode of pushing.

These 3 values are all multipliers on an epsilon of 1.0e-6 which is set internally in the code. Epsilon refers to a fraction of the size of a grid cell in each of its dimensions. Negative values for any of the 3 values distances inside a grid cell (inward from the cell face). Positive values are distances outside a grid cell (outward from the cell face). Zero values are exactly on the cell face. If any surface point (end points of 2d lines, corner points of 3d triangles) is between a slo to shi distance from any of the cell faces, then it is pushed to be a distance svalue from the face.

When surfpush is set to yes, SPARTA tries 2 kinds of pushing first, if the numerical issue is encountered for a grid cell. The first is slo = -1, shi = 1, svalue = 1, which means any point within a fractional distance (in each dimension) of 1.0e-6 inside the cell to 1.0e-6 outside the cell, is shifted to be a distance 1.0e-6 outside the cell. The second try is with slo = -1, shi = 1, svalue = 0, which puts the point on the face. If you set slo, shi, svalue explicitly, it will be the third option tried.

If you cannot get a surface to embed properly in a grid, meaning you get errors with the default setting of surfpush yes, then please contact the SPARTA developers. We will want to figure out what is unusual about your surface file!

	The gridcut keyword

	determines the cutoff distance at which ghost grid cells will be stored by each processor. Assuming the processor owns a compact clump of grid cells (see below), it will also store ghost cell information from nearby grid cells, up to this distance away.
If the setting is -1.0 (the default) then each processor owns a copy of ghost cells for all grid cells in the simulation. This can require too much memory for large models. If the cutoff is 0.0, processors own a minimal number of ghost cells. This saves memory but may require multiple passes of communication each timestep to move all the particles and migrate them to new owning processors. Typically a cutoff the size of 2-3 grid cell diameters is a good compromise that requires only modest memory to store ghost cells and allows all particle moves to complete in only one pass of communication.

An example of the gridcut cutoff applied to a clumped assignment is shown in this zoom-in of a 2d hierarchical grid with 5 levels, refined around a tilted ellipsoidal surface object (outlined in pink). One processor owns the grid cells colored orange. A bounding rectangle around the orange cells, extended by a short cutoff distance, is drawn as a purple rectangle. The rectangle contains only a few ghost grid cells owned by other processors.

[image: image0]

Important

Using the gridcut keyword with a cutoff >= 0.0 is only allowed if the grid cells owned by each processor are “clumped”. If each processor’s grid cells are “dispersed”, then ghost cells cannot be created with a gridcut cutoff >= 0.0.
Whenever ghost cells are generated, a warning to this effect will be triggered. At a later point when surfaces are read in or a simulation is performed, an error will result. The solution is to use the balance_grid command to change to a clumped grid cell assignment. See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell assignments and their relative performance trade-offs.

Important

If grid cells have already been defined via the create_grid, read_grid, or read_restart commands, when the gridcut cutoff is specified, then any ghost cell information that is currently stored will be erased. As discussed in the preceeding paragraph, a balance_grid command must then be invoked to regenerate ghost cell information. If this is not done before surfaces are read in or a simulation is performed, an error will result.

	The comm/sort keyword

	determines whether the messages a proc receives for migrating particles (every step) and ghost grid cells (at setup and after re-balance) are sorted by processor ID. Doing this requires a bit of overhead, but can make it easier to debug in parallel, because simulations should be reproducible when run on the same number of processors. Without sorting, messages may arrive in a randomized order, which means lists of particles and grid cells end up in a different order leading to statistical differences between runs.

	The comm/style keyword

	determines the style of particle communication that is performed to migrate particles every step. The most efficient method is typically for each processor to exchange messages with only the processors it has ghost cells for, which is the method used by the neigh setting. The all setting performs a relatively cheap, but global communication operation to determine the exact set of neighbors that need to be communicated with at each step.

For small processor counts there is typically little difference. On large processor counts the neigh setting can be significantly faster. However, if the flow is streaming in one dominant direction, there may be no particle migration needed to upwind processors, so the all method can generate smaller counts of neighboring processors.

Note that the neigh style only has an effect (at run time) when the grid is decomposed by the RCB option of the balance or fix balance commands. If that is not the case, SPARTA performs the particle communication as if the all setting were in place.

	The weight keyword

	determines whether particle weighting is used. Currently the only style allowed, as specified by wstyle = cell, is per-cell weighting. This is a mechanism for inducing every grid cell to contain roughly the same number of particles (even if cells are of varying size), so as to minimize the total number of particles used in a simulation while preserving accurate time and spatial averages of flow quantities. The cell weights also affect how many particles per cell are created by the create_particles and fix emit command variants.

If the mode is set to none, per-cell weighting is turned off if it
was previously enabled. For mode = volume or radius or
radius/only, per-cell weighting is enabled, which triggers two
computations. First, at the time this command is issued, each grid
cell is assigned a “weight” which is calculated based either on the
cell volume or radius, as specified by the mode setting. For
the volume setting, the weight of a cell is its 3d volume for a 3d
model, and the weight is its 2d area for a 2d model. For an
axi-symmetric model, the weight is the 3d volume of the 2d
axi-symmetric cell, i.e. the volume the area sweeps out when rotated
around the y=0 axis of symmetry. The radius and radius/only
settings are only allowed for axisymmetric systems. For the radius
option, the weight is the distance the cell midpoint is from the y=0
axis of symmetry, multiplied by the length of the cell in the x
direction. This mode attempts to preserve a uniform number of
particles in each cell, regardless of the cell area, for a uniform
targeted density. For the radius/only option, the weight is just the
distance the cell midpoint is from the y=0 axis of symmetry.
This mode attempts to preserve a uniform distribution of particles per unit area,for a uniform targeted density. See Section 6.2 for more details on axi-symmetric models.

Second, when a particle moves from an initial cell to a final cell, the initial/final ratio of the two cell weights is calculated. If the ratio > 1, then additional particles may be created in the final cell, by cloning the attributes of the incoming particle. E.g. if the ratio = 3.4, then two extra particle are created, and a 3rd is created with probability 0.4. If the ratio < 1, then the incoming particle may be deleted. E.g. if the ratio is 0.7, then the incoming particle is deleted with probability 0.3.

Note that the first calculation of weights is performed whenever the global weight command is issued. If particles already exist, they are not cloned or destroyed by the new weights. The second calculation only happens when a simulation is run.

	The particle/reorder keyword

	determines how often the list of particles on each processor is reordered to store particles in the same grid cell contiguously in memory. This operation is performed every nsteps as specified. A value of 0 means no reordering is ever done. This option is only available when using the KOKKOS package and can improve performance on certain hardware such as GPUs, but is typically slower on CPUs except when running on thousands of nodes.

	The mem/limit keyword

	limits the amount of memory allocated for several operations: load balancing, reordering of particles, and restart file read/write. This should only be necessary for very large simulations where the memory footprint for particles and grid cells is a significant fraction of available memory. In this case, these operations can trigger a memory error due to the additional memory they require. Setting a limit on the memory size will perform these operations more incrementally so that memory errors do not occur.

A load-balance operation can use as much as 3x more memory than the memory used to store particles (reported by SPARTA when a simulation begins). Particle reordering temporarily doubles the memory needed to store particles because it is performed out-of-place by default. Reading and writing restart files also requires temporary buffers to hold grid cells and particles and can double the memory required.

Specifying the value for mem/limit as grid, will allocate extra memory limited to the size of memory for storing grid cells on each processor. For most simulations this is typically much smaller than the memory used to store particles. Specifying a numeric value for bytes will allocate extra memory limited to that many MBytes on each processor. Bytes can be specified as a floating point value or an integer, e.g. 0.5 if you want to use 1/2 MByte of extra memory or 100 for a 100 MByte buffer. Specifying a value of 0 (the default) means no limit is used. The value used for mem/limit must not exceed 2GB or an error will occur.

For load-balancing, the communication of grid and particle data to new processors will then be performed in multiple passes (if necessary) so that only a portion of grid cells and their particles which fit into the extra memory are migrated in each pass. Similarly for particle reordering, multiple passes are performed using the extra memory to reorder the particles nearly in-place. For reading/writing restart files, multiple passes are used to read from or write to the restart file as well. For reading restart files, this option is ignored unless reading from multiple files (i.e. a “%” character was used in the command to write out the restart) and the number of MPI ranks is greater than the number of files.

Note that for these operations if the extra memory is too small, performance will suffer due to the large number of multiple passes required.

Restrictions:

The global surfmax command must be used before surface elements are defined, e.g. via the read_surf command.

Related commands:

mixture command

Default:

The keyword defaults are

	fnum = 1.0

	nrho = 1.0

	vstream = 0.0 0.0 0.0

	temp = 273.15

	gravity = 0.0 0.0 0.0 0.0

	surfs = explicit

	surfgrid = auto

	surfmax = 100

	splitmax = 10

	surftally = auto

	surfpush = yes

	gridcut = -1.0

	comm/sort = no

	comm/style = neigh

	weight = cell none

	particle/reorder = 0

	mem/limit = 0.

group command

Syntax:

group ID which style args

	ID = user-defined name of the grid or surface group

	which = grid or surf

	style options for which = grid: region or subtract or union or intersect or clear

	style options for which = surf: type or id or region or subtract or union or intersect or clear

	type or id args

	args = list of one or more surface element types or IDs

any entry in list can be a range formatted as A:B with A = starting index, B = ending index

	args = logical value

	logical = “<” or “<=” or “>” or “>=” or “==” or “!=”

	value = a surface element type or ID

	args = logical value1 value2

	logical = “<>”

	value1,value2 = surface element types or IDs

	region args = region-ID rflag

	region-ID = ID of region which grid cell or surface element must be in

	rflag = one or all or center

	any = one (or more) corner points of grid cell or surface element in region

	all = all corner points of grid cell or surface element in region

	any = center point of grid cell or surface element in region

	subtract args = two or more group IDs

	union args = one or more group IDs

	intersect args = two or more group IDs

	clear = no args

Examples:

group sphere surf type 1 3
group sphere surf id 50 100:150
group sphere surf id <= 1000
group sphere surf id <> 50 250
group patch grid region leftedge
group patch surf region cutout
group boundary surf subtract all a2 a3
group boundary grid union lower upper
group boundary surf union lower upper
group boundary surf intersect upper leftside

Description:

Assign grid cells to grid groups or surface elements to surface groups.
In SPARTA, a “grid group” is a collection of one or more grid cells. A
“surface” group is a collection of one or more surface elements (line
segements in 2d, triangles in 3d). Other commands take group IDs as
arguments so that they act on a set of grid cells or surface elements.
For example, see the compute grid, compute surf, fix ave/grid, fix ave/surf, dump grid, or dump surf commands.

An individual grid cell can belong to multiple grid groups. An
individual surface element can belong to multiple surface groups. Each
grid or surface group has a name which is specified as the ID in this
command. Each grid group and surface group ID must be unique, though the
same ID can be used for both a grid and surface group. IDs can only
contain alphanumeric characters and underscores.

If the specified group ID already exists, grid cells or surface elements
are added to the group. Otherwise a new group is created. This means the
group command can be used multiple times with the same group ID to
incrementally add grid cells or surface elements to the group.

A grid group with the ID all is pre-defined. All grid cells belong to
this group. Likewise, a surface group with the ID all is pre-defined.
All surface elements belong to this group.

After this command has performed its grid cell or surface elements
assignments, statistics about the group are printed to the screen, so
that you can check if the command operated as you expect.

Note that this command assigns all flavors of child grid cells to
groups, which includes unsplit, cut, split, and sub cells. See Section 6.8 of the manual gives details of how
SPARTA defines child, unsplit, split, and sub cells.

Styles for groups

The following styles can be used for grid groups.

The region style
puts all grid cells in the region volume associated
with the region-ID into the group. See the region
command for details on what kind of geometric regions can be defined.
Note that the side option for the region command can
be used to define whether the inside or outside of the geometric region
is considered to be “in” the region.

The rflag setting determines how a grid cell is judged to be in the
region or not. For rflag = one, it is in the region if any of its
corner points (4 for 2d, 8 for 3d) is in the region. For rflag =
all, all its corner points must be in the region. For rflag =
center, the center point of the grid cell must be in the region.

Styles for surfaces

The following styles can be used for surface groups.

The type and id styles
put all surface elements with the specified
types or surface element IDs into the group. These two styles can use
arguments specified in one of two formats.

For surface elements, the “type” of each element is defined when the
elements are read from a surface file, via the
read_surf command. In the file, a positive integer
type value can be optionally defined for each element (default = 1). The
specified type values can also be incremented using the typeadd
keyword of the read_surf commmand.

For surface elements, the “ID” of each element is simply its index from
1 to N, for all N surface elements that have been read in via the
read_surf command. The ordering of IDs is
determined by the order the elements appear in the read-in surface file.
If multiple files are read (or the same file multiple times), IDs
increase monotonically each time new surface elements are added.

The first format is a list of values (types or IDs). For example, the
first command in the examples above puts all surface elements of type 1
and 3 into the group named sphere. Each entry in the list can optionally
be a colon-separated range A:B, as in the second axample above. A
“range” is a series of values (types or IDs). The second example with
100:150 adds all surface elements with IDs from 100 to 150 (inclusive)
to the group named sphere, along with element 50 since it also appears
in the list of values.

The second format is a logical operator followed by one or two values
(type or ID). The 7 valid logicals are listed above. All the logicals
except “<>” take a single argument. The third example above adds all
surface elements with IDs from 1 to 1000 to the group named sphere. The
logical “<>” means “between” and takes 2 arguments. The fourth example
above adds all surface elements IDs from 50 to 250 (inclusive) to the
group named sphere.

The region style puts all surface elements in the region volume
associated with the region-ID into the group. See the
region command for details on what kind of geometric
regions can be defined. Note that the side option for the
region command can be used to define whether the
inside or outside of the geometric region is considered to be “in” the
region.

The rflag setting determines how a surface element is judged to be in
the region or not. For rflag = one, it is in the region if any of
its corner points (3 for triangle, 2 for line) is in the region. For
rflag = all, all its corner points must be in the region. For
rflag = center, the center point of the line segment or centroid
point of the triangle must be in the region.

Styles for either grids or surfaces

The following styles can be used for either grid or surface groups.

The subtract style takes a list of two or more existing group names as
arguments. All grid cells or surface elements that belong to the 1st
group, but not to any of the other groups are added to the specified
group.

The union style takes a list of one or more existing group names as
arguments. All grid cells or surface elements that belong to any of the
listed groups are added to the specified group.

The intersect style takes a list of two or more existing group names
as arguments. Grid cells or surface elements that belong to every one of
the listed groups are added to the specified group.

The clear style un-assigns all grid cells or surface elements that
were assigned to that group. This is a way to empty a group before
adding more grid cells or surface elements to it.

Restrictions:

No more than 32 grid groups and no more than 32 surface groups can be
defined, including “all”.

Related commands:

dump command,
region command,
compute grid
compute surf

Default:

All grid cells belong to the “all” grid group. All surface elements
belong to the “all” surface group.

if command

Syntax:

if boolean then t1 t2 ... elif boolean f1 f2 ... elif boolean f1 f2 ... else e1 e2 ...

	boolean = a Boolean expression evaluated as TRUE or FALSE (see below)

	then = required word

	t1,t2,…,tN = one or more SPARTA commands to execute if condition is
met, each enclosed in quotes

	elif = optional word, can appear multiple times

	f1,f2,…,fN = one or more SPARTA commands to execute if elif
condition is met, each enclosed in quotes (optional arguments)

	else = optional argument

	e1,e2,…,eN = one or more SPARTA commands to execute if no condition
is met, each enclosed in quotes (optional arguments)

Examples:

if "${steps} > 1000" then quit
if "${myString} == a10" then quit
if "$x <= $y" then "print X is smaller = $x" else "print Y is smaller = $y"
if "(${eng} > 0.0) || ($n < 1000)" then &
 "timestep 0.005" &
elif $n<10000 &
 "timestep 0.01" &
else &
 "timestep 0.02" &
 "print 'Max step reached'"
if "${eng} > ${eng_previous}" then "jump file1" else "jump file2"

Description:

This command provides an in-then-else capability within an input script.
A Boolean expression is evaluted and the result is TRUE or FALSE. Note
that as in the examples above, the expression can contain variables, as
defined by the variable command, which will be
evaluated as part of the expression. Thus a user-defined formula that
reflects the current state of the simulation can be used to issue one or
more new commands.

If the result of the Boolean expression is TRUE, then one or more
commands (t1, t2, …, tN) are executed. If it is FALSE, then Boolean
expressions associated with successive elif keywords are evaluated until
one is found to be true, in which case its commands (f1, f2, …, fN)
are executed. If no Boolean expression is TRUE, then the commands
associated witht the else keyword, namely (e1, e2, …, eN), are
executed. The elif and else keywords and their associated commands are
optional. If they aren’t specified and the initial Boolean expression is
FALSE, then no commands are executed.

The syntax for Boolean expressions is described below.

Each command (t1, f1, e1, etc) can be any valid SPARTA input script
command, except an include command, which is not
allowed. If the command is more than one word, it must enclosed in
quotes, so it will be treated as a single argument, as in the examples
above.

IMPORTANT NOTE: If a command itself requires a quoted argument (e.g. a
print command), then double and single quotes can be
used and nested in the usual manner, as in the examples above and below.
See Section commands 2 of the manual
for more details on using quotes in arguments. Only one of level of
nesting is allowed, but that should be sufficient for most use cases.

Note that by using the line continuation character “&”, the if command
can be spread across many lines, though it is still a single command:

if "$a < $b" then &
 "print 'Minimum value = $a'" &
 "run 1000" &
else &
 'print "Minimum value = $b"' &
 "run 50000"

Note that if one of the commands to execute is quit, as
in the first example above, then executing the command will cause SPARTA
to halt.

Note that by jumping to a label in the same input script, the if command
can be used to break out of a loop. See the variable delete command for info on how to delete the
associated loop variable, so that it can be re-used later in the input
script.

Here is an example of a double loop which uses the if and
jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if '$b > 2' then "print 'Jumping to another script'" "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

The Boolean expressions for the if and elif keywords have a C-like
syntax. Note that each expression is a single argument within the if
command. Thus if you want to include spaces in the expression for
clarity, you must enclose the entire expression in quotes.

An expression is built out of numbers (which start with a digit or
period or minus sign) or strings (which start with a letter and can
contain alphanumeric characters or underscores):

0.2, 100, 1.0e20, -15.4, etc
InP, myString, a123, ab_23_cd, etc

and Boolean operators:

A == B, A != B, A < B, A <= B, A > B, A >= B, A && B, A || B, !A

Each A and B is a number or string or a variable reference like $a or
${abc}, or A or B can be another Boolean expression.

If a variable is used it can produce a number when evaluated, like an
equal-style variable. Or it can produce a string,
like an index-style variable. For an individual
Boolean operator, A and B must both be numbers or must both be strings.
You cannot compare a number to a string.

Expressions are evaluated left to right and have the usual C-style
precedence: the unary logical NOT operator “!” has the highest
precedence, the 4 relational operators “<”, “<=”, “>”, and “>=” are
next; the two remaining relational operators “==” and “!=” are next;
then the logical AND operator “&&”; and finally the logical OR operator
“||” has the lowest precedence. Parenthesis can be used to group one or
more portions of an expression and/or enforce a different order of
evaluation than what would occur with the default precedence.

When the 6 relational operators (first 6 in list above) compare 2
numbers, they return either a 1.0 or 0.0 depending on whether the
relationship between A and B is TRUE or FALSE. When the 6 relational
operators compare 2 strings, they also return a 1.0 or 0.0 for TRUE or
FALSE, but the comparison is done by the C function strcmp().

When the 3 logical operators (last 3 in list above) compare 2 numbers,
they also return either a 1.0 or 0.0 depending on whether the
relationship between A and B is TRUE or FALSE (or just A). The logical
AND operator will return 1.0 if both its arguments are non-zero, else it
returns 0.0. The logical OR operator will return 1.0 if either of its
arguments is non-zero, else it returns 0.0. The logical NOT operator
returns 1.0 if its argument is 0.0, else it returns 0.0. The 3 logical
operators can only be used to operate on numbers, not on strings.

The overall Boolean expression produces a TRUE result if the result is
non-zero. If the result is zero, the expression result is FALSE.

Restrictions:

none

Related commands:

variable command
print command

Default:

none

include command

Syntax:

include file

	file = filename of new input script to switch to

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading SPARTA
commands from that file. When the new file is finished, the original
file is returned to. Include files can be nested as deeply as desired.
If input script A includes script B, and B includes A, then SPARTA could
run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input scripts.

Restrictions:

none

Related commands:

	variable command,

	jump command

Default:

none

jump command

Syntax:

jump file label

	file = filename of new input script to switch to

	label = optional label within file to jump to

Examples:

jump newfile
jump in.run2 runloop
jump SELF runloop

Description:

This command closes the current input script file, opens the file with
the specified name, and begins reading SPARTA commands from that file.
Unlike the include command, the original file is not
returned to, although by using multiple jump commands it is possible to
chain from file to file or back to the original file.

If the word “SELF” is used for the filename, then the current input
script is re-opened and read again.

Important

The SELF option is not guaranteed to work when the current input script is being read through stdin (standard input), e.g.

spa_g++ < in.script

since the SELF option invokes the C-library rewind() call, which may not be supported for stdin on some systems or by some MPI implementations.
This can be worked around by using the -in command-line argument, e.g.

spa_g++ -in in.script

or by using the -var command-line argument to pass the script name as a variable to the input script. In the latter case, a variable called “fname” could be used in place of SELF, e.g.

spa_g++ -var fname in.script < in.script

The 2nd argument to the jump command is optional. If specified, it is
treated as a label and the new file is scanned (without executing
commands) until the label is found, and commands are executed from that
point forward. This can be used to loop over a portion of the input
script, as in this example. These commands perform 10 runs, each of
10000 steps, and create 10 dump files named file.1, file.2, etc. The
next command is used to exit the loop after 10
iterations. When the “a” variable has been incremented for the tenth
time, it will cause the next jump command to be skipped.

variable a loop 10
label loop
dump 1 grid all 100 file.$a
run 10000
undump 1
next a
jump in.flow loop

If the jump file argument is a variable, the jump command can be used
to cause different processor partitions to run different input scripts.
In this example, SPARTA is run on 40 processors, with 4 partitions of 10
procs each. An in.file containing the example variable and jump command
will cause each partition to run a different simulation.

mpirun -np 40 lmp_ibm -partition 4x10 -in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Here is an example of a double loop which uses the if and
jump commands to break out of the inner loop when a condition is met,
then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions:

If you jump to a file and it does not contain the specified label,
SPARTA will come to the end of the file and exit.

Related commands:

variable command,
include command,
label command,
next command

Default:

none

label command

Syntax:

label ID

	ID = string used as label name

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump
command was used previously, this does nothing. But if a
jump command was used with a label argument to begin
invoking this script file, then all command lines in the script prior to
this line will be ignored. I.e. execution of the script will begin at
this line. This is useful for looping over a section of the input script
as discussed in the jump command.

Restrictions:

none

Related commands:

none

Default:

none

List of Commands

	adapt_grid command

	balance_grid command

	bound_modify command

	boundary command

	clear command

	collide command

	collide_modify command

	compute command

	compute boundary command

	compute count command

	compute count/kk command

	compute distsurf/grid command

	compute distsurf/grid/kk command

	compute eflux/grid command

	compute eflux/grid/kk command

	compute fft/grid command

	compute grid command

	compute grid/kk command

	compute isurf/grid command

	compute ke/particle command

	compute ke/particle/kk command

	compute lambda/grid command

	compute lambda/grid/kk command

	compute pflux/grid command

	compute pflux/grid/kk command

	compute property/grid command

	compute property/grid/kk command

	compute react/boundary command

	compute react/isurf/grid command

	compute react/surf command

	compute reduce command

	compute sonine/grid command

	compute sonine/grid/kk command

	compute surf command

	compute surf/kk command

	compute temp command

	compute temp/kk command

	compute thermal/grid command

	compute thermal/grid/kk command

	compute tvib/grid command

	create_box command

	create_grid command

	create_particles command

	create_particles/kk command

	dimension command

	dump command

	dump image command

	dump movie command

	dump_modify command

	echo command

	fix command

	fix ablate command

	fix adapt command

	fix adapt/kk command

	fix ambipolar command

	fix ave/grid command

	fix ave/grid/kk command

	fix ave/surf command

	fix ave/time command

	fix balance command

	fix balance/kk command

	fix emit/face command

	fix emit/face/kk command

	fix emit/face/file command

	fix emit/surf command

	fix grid/check command

	fix grid/check/kk command

	fix move/surf command

	fix move/surf/kk command

	fix print command

	fix vibmode command

	global command

	group command

	if command

	include command

	jump command

	label command

	log command

	mixture command

	move_surf command

	Syntax:

	next command

	package command

	partition command

	print command

	quit command

	react command

	react_modify command

	read_grid command

	read_isurf command

	read_particles command

	read_restart command

	read_surf command

	region command

	remove_surf command

	reset_timestep command

	restart command

	run command

	scale_particles command

	seed command

	shell command

	species command

	stats command

	stats_modify command

	stats_style command

	suffix command

	surf_collide command

	surf_modify command

	surf_react command

	timestep command

	uncompute command

	undump command

	unfix command

	units command

	variable command

	Syntax:

	write_grid command

	write_isurf command

	write_restart command

	write_surf command

log command

Syntax:

log file keyword

	file = name of new logfile

	keyword = append if output should be appended to logfile (optional)

Examples:

log log.equil
log log.equil append

Description:

This command closes the current SPARTA log file, opens a new file with
the specified name, and begins logging information to it. If the
specified file name is none, then no new log file is opened. If the
optional keyword append is specified, then output will be appended to
an existing log file, instead of overwriting it.

If multiple processor partitions are being used, the file name should be
a variable, so that different processors do not attempt to write to the
same log file.

The file “log.sparta” is the default log file for a SPARTA run. The name
of the initial log file can also be set by the command-line switch -log.
See Section 2.6 for details.

Restrictions:

none

Related commands:

none

Default:

The default SPARTA log file is named log.sparta

mixture command

Syntax:

mixture ID species1 species2 ... keyword args ...

	ID = user-defined name of the mixture

	species1, species2, … = zero or more species IDs to include in the
mixture

	zero or more keyword/arg pairs may be appended

	keyword = nrho or vstream or temp or frac or group or
copy or delete

	nrho arg = density

	density = number density of entire mixture (# per length^3 units)

	vstream args = Vx Vy Vz

	Vx,Vy,Vz = streaming velocity of entire mixture (velocity units)

	temp arg = thermal

	thermal = temperature of entire mixture (temperature units)

	trot arg = Trot

	Trot = rotational temperature of entire mixture (temperature units)

	tvib arg = Tvib

	Tvib = vibrational temperature of entire mixture (temperature units)

	frac arg = fraction

	fraction = number fraction for each listed species (0 to 1)

	group arg = SELF or group-ID

	
	SELF = put each listed species (or all species if none listed) in its own group

	group-ID = put the listed species (or all species if none listed) in a group with this ID

	copy arg = new-ID

	new-ID = ID of new mixture to create, as a copy of this one

	delete args = sp1 sp2 …

	sp1,sp2,… = species to delete from the mixture

Examples:

mixture air N O NO group lite
mixture air N O NO vstream 250.0 0.0 0.0 group species
mixture air N frac 0.8
mixture air O frac 0.2 copy myAir
mixture background N O
mixture air delete N NO

Description:

Define a gas mixture and its properties. A mixture can be referenced
by its ID in several other SPARTA commands such as
create_particles or per-grid
computes. Any number of mixtures can be defined and
used in a simulation.

A mixture is a collection of one or more particle species as defined by
the species command. Each species belongs to a named
group within the mixture so that particles of all species in the group
can be acted on together by other commands. The mixture has both global
attributes and per-species attributes. All attributes have default
values unless they are explicitly specified.

The ID for a mixture is used to identify the mixture in other commands.
Each mixture ID must be unique. The ID can only contain alphanumeric
characters and underscores.

Note that the mixture command can be used multiple times with the same
ID, to add species to the mixture, define groups within the mixture, or
change its attributes. Also note that a species can belong to more than
one mixture.

There are 2 default mixtures defined by SPARTA that always exist.

The first default mixture has an ID = “all”, and contains all species
that have been defined. When new species are created via the “species”
command, they are automatically added to this mixture. This mixture has
only a single group, also named “all”, which all species belong to.

The second default mixture has an ID = “species”, and also contains all
species that have been defined. When new species are created via the
“species” command, they are also automatically added to this mixture.
This mixture defines one group per species, each with the species name,
so that each species in the mixture belongs to its own group.

Zero or more species can be specified in the mixture command. If a
listed species is not already in the mixture, due to a previous mixture
command with the same ID, then that species is added to the mixture. As
discussed below, it will be assigned to a default group and assigned
default per-species attributes, unless the appropriate keywords are also
specified.

Species can be specified which are already part of the mixture, to
change their group assignment or their per-species proerties, as
disussed below.

Zero species can be specified, if other keywords are used which alter
group assignments or change global attributes of the mixture, as
discussed below.

These keywords set global attributes of the mixture.

The nrho keyword sets a global attribute of the mixture, namely its
density. For 3d simulations the units of the specified density are
#/volume. For 2d, the units are effectively #/area, since the
z-dimension thickness of the simulation box = 1.0.

The vstream keyword sets a global attribute of the mixture, namely the
streaming velocity. Particles created using the mixture will use the
specified Vx,Vy,Vz values.

The temp keyword sets a global attribute of the mixture, namely the
thermal temperature of its particles. When particles are created, this
value is used to sample a Gaussian velocity distribution, which is
superposed on the streaming velocity, when each particle’s velocity is
initialized.

The trot keyword sets a global attribute of the mixture, namely the
rotational temperature of its particles. When particles are created,
this value is used to sample a Gaussian energy distribution to define
each particle’s rotational energy. If this keyword is not specified, the
thermal temperature is used as the default.

The tvig keyword sets a global attribute of the mixture, namely the
vibrational temperature of its particles. When particles are created,
this value is used to sample a Gaussian energy distribution to define
each particle’s vibrational energy. If this keyword is not specified,
the thermal temperature is used as the default.

This keyword sets per-species attributes of the mixture.

The frac keyword sets a per-species attribute for individual species
in the mixture. Each species has a relative fractional density, such as
0.2, meaning one out of 5 particles is that species. The sum of this
value across all species in the mixture must equal 1.0. The frac
keyword sets this value for the listed species. If this value has never
been set for M species out of the total N species in the mixture, then
when a simulation is run, the frac value for each of the M species is
set to (1 - sum)/M, where sum is the sum of the frac values for the
N-M assigned species.

Each species in a mixture is assigned to exactly one group. The group
keyword can be used to set or change these assignments. Every mixture
has one or more named groups.

As described by the collide command, mixture groups
are used when performing collisions so that collisions attempts,
partners, and parameters can be treated on a per-group basis for
accuracy and efficiency. Per-grid computes also use
mixture groups to calculate per-grid quantities on a per-grid-cell,
per-group basis, i.e. on subsets of particles within each grid cell.

If the group keyword is not used in a mixture command, no changes to
group assignements are made for species that are already in the mixture.
If one or more new species are specified, then all of them are assigned
to a group with “default” as the group ID. Note that this means that
mixtures defined with mixture commands that never use the group
keyword will have just a single group.

If the group keyword is used, the group ID can be any string you
choose. Similar to the mixture ID, it can only contain alphanumeric
characters and underscores. Using SELF for the group ID has a special
meaning as discussed below.

The operation of the group keyword depends on whether no species or
some species are specified explicitly in the mixture command. It also
depends on whether the group ID is SELF or a user-defined name. In each
case, after the operation is done, any group IDs for the mixture that
have no species assigned to them are deleted. This includes the
“default” group if it was implicitly created by a previous mixture
command.

	If no species are listed in the mixture command and the group ID is
SELF, then every species already in the mixture is assigned to a
group with its species ID as the group ID. I.e. there will now be one
species per group.

	If one or more species are listed and the group ID is SELF, then each
listed species is assigned to a group with its species ID as the
group ID.

	If no species are listed and the group ID is not SELF, then all
species already in the mixture are assigned to a group with the
specified ID.

	If one or more species are listed and the group ID is not SELF, then
the listed species are all assigned to a group with the specified ID.

These keywords operate on one or more mixtures.

The copy keyword creates a new mixture with new-ID which is an
identical copy of the mixture with ID. Regardless of where the copy
keyword appears in the command, the operation is delayed until all other
keywords have been invoked.

This is useful if you wish to create a new mixture which is nearly the
same as the current mixture. Subsequent mixture commands can be used to
change the properties of the new mixture.

The delete keyword removes one or more species from the mixture,
specified as sp1, sp2, etc. No other keywords can be used with
delete. All arguments that follow it are assumed to be species IDs
that are currently in the mixture. When using delete, no species can
be defined before the keyword, i.e. species1, species2, etc cannot
be defined in the comand syntax described above.

After the listed species are removed, any group IDs for the mixture that
have no species assigned to them are also deleted.

Restrictions:

The streaming velocity and thermal temperature of the mixture cannot
both be zero. A zero streaming velocity means a zero vector = (0,0,0).

The restrictions on use of the delete keyword are described above.

Related commands:

global command,
create_particles command

Default:

The nrho, vstream, and temp defaults are those defined for the
background gas density, as set by the global command.
The trot and tvib defaults are to use the thermal temperature
temp, either its default or the value specified by this command. The
frac default is described above. The group keyword has no default;
if it is not used, new species not already in the mixture are assigned
to a group with a group ID = “default”.

move_surf command

Syntax:

move_surf groupID style args ... keyword value ...

	group-ID = group ID for which surface elements to move

	style = file or trans or rotate

	file args = filename entry

	
	trans args = Dx Dy Dz

	
	Dx,Dy,Dz = displacement applied to all surface points (distance units)

	rotate args = theta Rx Ry Rz Ox Oy Oz

	theta = rotate surface points by this angle in counter-clockwise direction (degrees)

	Rx,Ry,Rz = rotate around vector starting at origin pointing in this direction

	Ox,Oy,Oz = origin to rotate around (distance units)

	zero or more keyword/value pairs may be appended

	keyword = connect

	connect arg = yes or no

Examples:

move_surf all trans 1 0 0
move_surf partial rotate 360 0 0 1 5 5 0 connect yes
move_surf object2 rotate 360 0 0 1 5 5 0

Description:

This command performs a one-time movement of all the surface elements in the specified group via the specified style. See the group surf command for info on how surface elements can be assigned to surface groups.

This command can be invoked as many times as desired, before or between simulation runs. Surface points can also be moved on-the-fly during a simulation by using the fix move/surf command.

Moving surfaces between simulations can be useful if you want to perform a series of runs from one input script, where some attribute of the surface elements change, e.g. the separation between two spheres.

Important

The file style is not yet implemented.
It will allow new positions of points to be listed in a file.

In 2d, surface elements are line segments with 2 vertices each. In 3d,
surface elements are triangles with 3 vertices each. If a line segment
or triangle belongs to the specified group, all of its vertices are
moved. This effectively moves the entire surface element.

Important

Unless a vertex is on the simulation box boundary, it will be part of two surface elements (in 2d) or multiple surface elements (in 3d).
If you choose a surface groupID which does not include all the elements in a gridded object, then you cannot move them without breaking apart the object in a “watertight” sense (so that particles could erroneously move inside the object).
To prevent this use the optional connect keyword with its yes setting. This will insure that multiple copies of the same vertex in other elements (not in the surface group) will also be moved. This is a way to morph the shape of a gridded object, e.g. make a sphere more oblate, by moving only a portion of its elements.

The trans style shifts or displaces each vertex by the vector (Dx,Dy,Dz).

The rotate style rotates the coordinates of all vertices by an angle theta in a counter-clockwise direction, around the vector starting at (Ox,Oy,Oz) and pointing in the direction Rx,Ry,Rz. Any desired rotation can be represented by an appropriate choice of (Ox,Oy,Oz), theta, and (Rx,Ry,Rz).

After the surface has been moved, then all particles in grid cells that meet either of these criteria are deleted:

	the grid cell is now inside a surface

	the grid cell overlaps with a surface element that moved

This is to prevent particles from ending up inside surface objects.

Note that in this context, “overlaps” means that any part of the surface element touches any part of the grid cell, including its surface. Also note that if a surface element object (e.g. a sphere) moved a long distance then grid cells that were inside the object in its old position and thus contained no particles, will still have no particles immediately after the move. This will effectively leave a “void” in the flow until particles re-fill the grid cells that are now outside the object.

Restrictions:

An error will be generated if any surface element vertex is moved
outside the simulation box.

Related commands:

read_surf command,
fix move/surf command
remove_surf command

Default:

The option default is connect = no.

next command

Syntax:

next variables

	variables = one or more variable names

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the
variable command. It assigns the next value to the
variable from the list of values defined for that variable by the
variable command. Thus when that variable is
subsequently substituted for in an input script command, the new value
is used.

See the variable command for info on how to define
and use different kinds of variables in SPARTA input scripts. If a
variable name is a single lower-case character from “a” to “z”, it can
be used in an input script command as $a or $z. If it is multiple
letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then
all must be of the same variable style: index, loop, file,
universe, or uloop. An exception is that universe- and
uloop-style variables can be mixed in the same next command.

All the variables specified with the next command are incremented by one
value from their respective list of values. A file-style variable
reads the next line from its associated file. String- or particle-
or equal- or world-style variables cannot be used with the the next
command, since they only store a single value.

When any of the variables in the next command has no more values, a flag
is set that causes the input script to skip the next
jump command encountered. This enables a loop containing
a next command to exit. As explained in the variable
command, the variable that has exhausted its values is also deleted.
This allows it to be used and re-defined later in the input script.
File-style variables are exhausted when the end-of-file is reached.

When the next command is used with index- or loop-style variables,
the next value is assigned to the variable for all processors. When the
next command is used with file-style variables, the next line is read
from its file and the string assigned to the variable.

When the next command is used with universe- or uloop-style
variables, all universe- or uloop-style variables must be listed in
the next command. This is because of the manner in which the
incrementing is done, using a single lock file for all variables. The
next value (for each variable) is assigned to whichever processor
partition executes the command first. All processors in the partition
are assigned the same value(s). Running SPARTA on multiple partitions of
processors via the “-partition” command-line switch is described in
Section 2.6 of the manual. Universe-
and uloop-style variables are incremented using the files
“tmp.sparta.variable” and “tmp.sparta.variable.lock” which you will see
in your directory during and after such a SPARTA run.

Here is an example of running a series of simulations using the next
command with an index-style variable. If this input script is named
in.flow, 8 simulations would be run using surface data files from
directories run1 thru run8.

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
create_box 0 10 0 10 0 10
create_grid 100 100 100
read_surf data.surf 1
...
run 10000
shell cd ..
clear
next d
jump in.flow

If the variable “d” were of style universe, and the same in.flow input
script were run on 3 partitions of processors, then the first 3
simulations would begin, one on each set of processors. Whichever
partition finished first, it would assign variable “d” the 4th value and
run another simulation, and so forth until all 8 simulations were
finished.

Jump and next commands can also be nested to enable multi-level loops.
For example, this script will run 15 simulations in a double loop.

variable i loop 3
 variable j loop 5
 clear
 ...
 read_surf data.surf.ij 1
 print Running simulation $i.$j
 run 10000
 next j
 jump in.script
next i
jump in.script

Here is an example of a double loop which uses the if and
jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions:

none

Related commands:

	jump command,

	include command,

	shell command,

	variable command

Default:

none

package command

Syntax:

package style args

	style = kokkos

	args = arguments specific to the style

	kokkos args = keyword value …

zero or more keyword/value pairs may be appended

keywords = comm or reduction

	comm value = threaded or classic

	threaded = perform pack/unpack using KOKKOS (e.g. on GPU or using OpenMP) (default)

	classic = perform communication pack/unpack in non-KOKKOS mode

	reduction = parallel/reduce or atomic

	parallel/reduce = use parallel reduction for statistics (default)

	atomic = use atomic reduction for statistics

	collide/extra = factor

	factor = increase memory used for collisions by this factor (default)

	collide/retry = yes or no

	yes = retry collision algorithm until successful

	no = do not retry collision algorithm (default)

	gpu/direct = yes or no
- yes = use GPU-direct, i.e. CUDA-aware MPI (default)
- no = do not use GPU-direct

Examples:

package kokkos comm classic
package kokkos comm threaded reduction atomic
package kokkos gpu/direct no

Description:

This command invokes package-specific settings for the KOKKOS
accelerator package available in SPARTA.

If this command is specified in an input script, it must be near the top
of the script, before the simulation box has been created. This is
because it specifies settings that the accelerator package used in its
initialization, before a simulation is defined.

This command can also be specified from the command-line when launching
SPARTA, using the “-pk” command-line switch. The syntax is exactly the same
as when used in an input script.

Note that the KOKKOS accelerator package requires the package command to
be specified, if the package is to be used in a simulation (SPARTA can
be built with the accelerator package without using it in a particular
simulation). However, a default version of the command is typically
invoked by other accelerator settings. For example, the KOKKOS package
requires a “-k on” command-line switch
respectively, which invokes a “package kokkos” command with default
settings.

Note

A package command for a particular style can be invoked multiple times when a simulation is setup, e.g. by the “-k on”, “-sf”, and “-pk” command-line switches, and by using this command in an input script. Each time it is used all of the style options are set, either to default values or to specified settings. I.e. settings from previous invocations do not persist across multiple invocations.

See the the Accelerating SPARTA section of the manual for more details about using the various accelerator packages for speeding up SPARTA simulations.

The kokkos style invokes settings associated with the use of the
KOKKOS package.

All of the settings are optional keyword/value pairs. Each has a default
value as listed below.

The reduction keyword sets the type of reduction used to gather
statistics. The parallel/reduce option uses a parallel reduction and
is typically the preferred method when running on CPUs and Xeon Phis.
The atomic option uses thread atomics and is typically faster when
running on GPUs.

Chemical reactions can increase the number of particles in the
simulation, which requires extra memory storage. It is not possible to
resize Kokkos data structures during the collide routine, so two
workarounds are provided. The default is to use the collide/extra
keyword, which ensures there is extra memory allocated to store new
particles. For example, if collide/extra is set to 1.1, then the
memory is over-allocated by 10%. If this space is still not sufficient
to hold new particles, the code will error out and the simulation must
be restarted using a larger value for collide/extra. Alternatively, if
the collide/retry option is set to yes, backup copies of the Kokkos
data structures are created. If space is exceeded during the collide
routine, the Kokkos data structures are restored from backup, their size
is increased, and the collide routine is started over from the
beginning. This guarantees that the collide routine will eventually
succeed without producing an error, but increased memory by a factor of
2 and also has overhead from making a backup copy of the data. If the
collide/retry option is set to yes, the collide/extra keyword will
be ignored. If reactions are not defined, both these options will be
ignored.

The comm keyword determines whether the host or device performs the
packing and unpacking of data when communicating per-atom data between
processors. The value options are threaded or classic.

The optimal choice for this keyword depends on the hardware used. When
running on CPUs or Xeon Phi, the classic option is typically fastest.
When using GPUs, the threaded value will typically be optimal. In this
case data can stay on the GPU for many timesteps without being moved
between the host and GPU. This requires that your MPI is able to access
GPU memory directly. Currently that is true for OpenMPI 1.8 (or later
versions), Mvapich2 1.9 (or later), and CrayMPI.

The gpu/direct keyword chooses whether GPU-direct will be used. When
this keyword is set to on, buffers in GPU memory are passed directly
through MPI send/receive calls. This can reduce overhead of first
copying the data to the host CPU. However GPU-direct is not supported on
all systems, which can lead to segmentation faults and would require
using a value of off.

Restrictions:

This command cannot be used after the simulation box is defined by a
create_box command.

The kk style of this command can only be invoked if SPARTA was built
with the KOKKOS package. See the Making SPARTA section for more info.

Related commands:

suffix command,
“-pk” command-line setting <start-command-line-options

Default:

For the KOKKOS package, the option defaults are comm = threaded,
reduction = parallel/reduce, collide/extra = 1.1, and collide/retry =
no, gpu/direct yes. These settings are made automatically by the
required “-k on” command-line switch.
You can change them by using the package kokkos command in your input
script or via the “-pk kokkos” command-line switch.

partition command

Syntax:

partition style N command ...

	style = yes or no

	N = partition number (see asterisk form below)

	command = any SPARTA command

Examples:

partition yes 1 processors 4 10 6
partition no 5 print "Active partition"
partition yes *5 fix all nve
partition yes 6* fix all nvt temp 1.0 1.0 0.1

Description:

This command invokes the specified command on a subset of the partitions
of processors you have defined via the -partition command-line switch.
See Section 2.6 of the manual for an
explanation of the switch.

Normally, every input script command in your script is invoked by every
partition. This behavior can be modified by defining world- or
universe-style variables that have different values
for each partition. This mechanism can be used to cause your script to
jump to different input script files on different partitions, if such a
variable is used in a jump command.

The “partition” command is another mechanism for having an input script
operate differently on different partitions. It is basically a prefix on
any SPARTA command. The commmand will only be invoked on the
partition(s) specified by the style and N arguments.

If the style is yes, the command will be invoked on any partition
which matches the N argument. If the style is no the command will
be invoked on all the partitions which do not match the Np argument.

Partitions are numbered from 1 to Np, where Np is the number of
partitions specified by the -partition command-line switch.

N can be specified in one of two ways. An explicit numeric value can
be used, as in the 1st example above. Or a wild-card asterisk can be
used to span a range of partition numbers. This takes the form “*” or
“n” or “n” or “m*n”. An asterisk with no numeric values means all
partitions from 1 to Np. A leading asterisk means all partitions from 1
to n (inclusive). A trailing asterisk means all partitions from n to Np
(inclusive). A middle asterisk means all partitions from m to n
(inclusive).

Restrictions:

none

Related commands:

none

Default:

none

print command

Syntax:

print string keyword value:pre

	string = text string to print, which may contain variables

	zero or more keyword/value pairs may be appended

	keyword = file or append or screen

file value = filename
append value = filename
screen value = yes or no

Examples:

print "Done with equilibration"
print 'Done with equilibration'
print "Done with equilibration" file info.dat

compute myTemp temp
variable t equal c_myTemp
print "The system temperature is now $t"

Description:

Print a text string to the screen and logfile. One line of output is
generated. The text string must be a single argument, so it should be
enclosed in quotes if it is more than one word. If it contains
variables, they will be evaluated and their current values printed.

If the file or append keyword is used, a filename is specified to
which the output will be written. If file is used, then the filename
is overwritten if it already exists. If append is used, then the
filename is appended to if it already exists, or created if it does not
exist.

If the screen keyword is used, output to the screen and logfile can be
turned on or off as desired.

If you want the print command to be executed multiple times (e.g. with
changing variable values), there are 3 options. First, consider using
the fix print command, which will print a string
periodically during a simulation. Second, the print command can be used
as an argument to the every option of the run command.
Third, the print command could appear in a section of the input script
that is looped over (see the jump and
next commands).

See the variable command for a description of
equal style variables which are typically the most useful ones to use
with the print command. Equal-style variables can calculate formulas
involving mathematical operations, global values calculated by a
compute or fix, or references to other
variables.

Restrictions:

none

Related commands:

fix print command,
variable command

Default:

The option defaults are no file output and screen = yes.

quit command

Syntax:

quit

Examples:

quit
if "$n > 10000" then quit

Description:

This command causes SPARTA to exit, after shutting down all output
cleanly.

It can be used as a debug statement in an input script, to terminate the
script at some intermediate point.

It can also be used as an invoked command inside the “then” or “else”
portion of an if command.

Restrictions:

none

Related commands:

if command

Default:

none

react command

Syntax:

react style args

	style = none or tce or qk or tce/qk

	args = arguments for that style

none args = none
tce args = infile
 infile = file with list of gas-phase chemistry reactions
qk args = infile
 infile = file with list of gas-phase chemistry reactions
tce/qk args = infile
 infile = file with list of gas-phase chemistry reactions
tce/kk args = infile
 infile = file with list of gas-phase chemistry reactions

Examples:

react none
react tce air.tce
react qk air.tce

Description:

Define chemical reactions to perform in the gas phase when
particle-particle collisions occur. See the
surf_react command for specification of surface
chemistry reactions.

The none style means that no chemistry will be performed, which is the
default.

For other styles, a file is specified which contains a list of chemical
reactions, with their associated parameters. The reactions are read into
SPARTA and stored in a list. Each time a simulation is run via the
run command, the list is scanned. Only reactions for
which all the reactants and all the products are currently defined as
species-IDs will be active for the simulation. Thus the file can contain
more reactions than are used in a particular simulation. See the
species command for how species IDs are defined.

The reaction models for the various styles are described below. When a
pair of particles collide, the list of all reactions with those two
species as reactants is looped over. A probability for each reaction is
calculated, using the formulas discussed below, and a random number is
used to decide which reaction (if any) takes place. No check is made
that the sum of probabilities for all possible reactions is <= 1.0, but
that should normally be the case if reasonable reaction coefficients are
defined.

The format of the reaction file is the same for all three of the
currently defined styles, and is also described below. The various
styles interpret and compute the specified reactions in different ways.
The data directory in the SPARTA distribution contains reaction files
for these reaction models, all with the suffix “.tce”.

The tce style is Bird’s Total Collision Energy (TCE) model. When this
style is specified, all computed reactions will use the TCE model.

Using kinetic theory, the TCE model allows for reaction probabilities to
be defined based on known, measured, reaction rates. The model is
described in detail in [Bird94]; see chapter 6. The
required input parameters for each reaction (discussed below) are values
that permit its effective Arrhenius rate to be calculated, namely

\[K(T) = A T^b e^{-E_a/kT }\]

where K(T) is the forward reaction rate, T is the temperature of the
participating molecules which is a function of their velocities and
internal energy states, k the Boltzmann constant, and A,b,Ea are input
parameters as discussed below.

All 5 reactions coefficients read from the reaction file (described
below) are used to calculate terms in equation 6.10 of
[Bird94] for the probability that a reaction takes place.

The C2, C3, C4 values are the Arrhenius activation energy Ea, prefactor
A, and exponent b, used in the rate formula above.

The qk style is Bird’s Quantum-Kinetic model (QK). When this style is
specified, all computed reactions will use the QK model.

The QK model implemented is that of [Bird09] as validated
[Gallis09] and modified [Gallis10].

The QK model depends solely on properties of the colliding molecules and
unlike the TCE model makes no use of measured reaction rates or
adjustable parameters. The macroscopic properties used in the QK model
are the available collision energy, activation energies, and quantized
vibrational energy levels.

According to the QK model dissociation reactions take place when the
maximum obtainable vibrational energy after an inelastic energy exchange
is higher than the dissociation level [Bird09].

\[int [E_c/(k \Theta_v)] > \Theta_d / \Theta_v\]

Exchange reactions take place when the vibrational energy after a trial
energy exchange is above the activation energy of the exchange reaction
[Gallis10].

\[i_v > int[E_a/ (k \Theta_v)]\]

A new version of the QK model for exchange reactions has been proposed
by [Bird11]. This will be implemented in future releases
of SPARTA.

For the QK model, SPARTA reads the same 5 coefficients per reaction from
the reaction file (described below) as for the TCE model. Three of the
coefficients (C1,C2,C5) are used to calculate terms in equation 6.10 of
[Bird94] for the probability that a reaction takes place.
The Arrhenius rate parameters C3 and C4 are ignored by the QK model.

The tce/qk style is a hybrid model which can be used to compute
reactions using both the TCE and QK models. When this style is
specified, reactions from the input file that are flagged with an A =
Arrhenius style will be computed using the TCE model. Reactions from the
input file that are flagged with a Q = Quantum style will be computed
using the QK model.

The format of the input reaction file is as follows. Comments or blank
lines are allowed in the file. Comment lines start with a “#” character.
All other entries must come in 2-line pairs with values separated by
whitespace in the following format

R1 + R2 + ... --> P1 + P2 + ...
type style C1 C2 ...

The first line is a text-based description of a single reaction. R1, R2,
etc are one or more reactants, listed as species IDs.
P1, P2, etc are one or more products, also listed as
species IDs. The number of allowed reactants and
products depends on the reaction type, as discussed below. In most cases
there is no restriction on the order or listed reactants or products on
what species are listed. Exceptions are detailed below. Note that
individual reactants and products must be separated by whitespace and a
“+” sign. The left-hand and right-hand sides of the equation must be
separated by whitespace and “–>”.

The type of each reaction is a single character (upper or lower case)
with the following meaning. The type determines how many reactants and
products can be specified in the first line.

D = dissociation = 2 reactants and 3 products
E = exchange = 2 reactants and 2 products
I = ionization = 2 reactants and 2 or 3 products
R = recombination = 2 reactants and 1 product (see below)

A dissociation reaction means that R1 dissociates into P1 and P2 when it
collides with R2. R2 is preserved in the collision, so P3 = R2 is
required.

An exchange reaction is a collision between R1 and R2 that results in
new products P1 and P2. There is no restriction on the species involved
in the reaction.

An ionization reaction with 2 products is typically a collision between
R1 and R2 that results in a positively charged ion and an election.
See the discussion on ambipolar reactions below.
However, SPARTA does not check for this, so there is no restriction on the species involved in the reaction.

An ionization reaction with 3 products is typically a collision
between a neutral R1 and an electon R2 which ejects an electron from
the neutral species, resulting in an ion P1 and a new electron P2.
See the discussion on ambipolar reactions below. Again, SPARTA does
not check for this, so there is no restriction on the species involved
in the reaction. R2 is preserved in the collision, so P3 = R2 is
required.

A recombination reaction is a collision between R1 and R2 that results
in P1. There is no restriction on the species involved in the reaction.

Note that recombination reactions actually involve a 3rd particle whose
species is not altered by the reaction but whose velocity is, in order
to balance energy and momentum. So conceptually it can be thought of as
both a reactant and a product. There are 3 ways you can specify
recombination reactions, to include information about which species of
3rd particles are eligible to participate:

R1 + R2 -> P1
R1 + R2 -> P1 + atom/mol
R1 + R2 -> P1 + P2

In the first case, no info for a 3rd particle is listed. This means any
species of 3rd particle can be used. In the second case, a non-species
keyword is used, either “atom” or “mol”. This means the 3rd particle
must be either an atomic species, or a molecular species. This is based
on the vibrational degrees of freedom listed in the species file. A non-zero DOF is molecular; zero DOF is atomic.
In the third case, a specific species P2 is listed. This means the 3rd
particle must be that species.

Note that for the same R1 and R2, multiple recombination reactions can
be listed in the reaction file. When two particles R1 and R2 are
selected for collision and a possible reaction, if any recombination
reaction is defined for R1 and R2, then a 3rd particle in the same grid
cell is randomly selected. Its species P2 is used to match at most one
of the possibly multiple recombination reactions for R1 and R2. Only
that recombination reaction is checked for a reaction as a possible
outcome of the collision.

This matching is done from most-specific to least-specific, i.e. the
reverse ordering of the 3 cases above. If there is a defined reaction
that lists P2 (third case, most specific), it is used. If not, and there
is a defined reaction for “atom” or “mol” that corresponds to P2 (second
case, intermediate specificity), then it is used. If not, and there is a
defined reaction with no P2 (first case, least specific), then it is
used. If none of these matches occur, no recombination reaction is
possible for that collision between R1 and R2. Note that these matching
rules means that for the same R1 and R2, you can list two reactions, one
with P2 = “atom”, and one with P2 = “mol”. And/or you can list multiple
reactions of the third kind, each with a unique P2.

Important

If the ambipolar approximation is being used, via the fix ambipolar and collide_modify ambipolar yes commands, then reactions which involve either ambipolar ions or the ambipolar electron have more restricitve rules about the ordering of reactants and products. See the next section for a discussion of these requirements.

The style of each reaction is a single character (upper or lower case)
with the following meaning:

	A = Arrhenius

	Q = Quantum

The style determines how many reaction coefficients are listed as C1,
C2, etc, and how they are interpreted by SPARTA.

For both the A = Arrhenius style and Q = Quantum style, there are 5
coefficients:

	C1 = number of internal degrees of freedom (as defined by the TCE
model)

	C2 = Arrhenius activation energy Ea

	C3 = Arrhenius prefactor A

	C4 = Arrhenius exponent b

	C5 = overall reaction energy (positive for exothermic)

The different reaction styles use these values in different ways, as
explained above.

If the ambipolar approximation is being used, via the fix ambipolar command, then reactions which involve
either ambipolar ions or the ambipolar electron have more restricitve
rules about the ordering of reactants and products, than those described
in the preceeding section.

Note that ambipolar collisions are turned on via the collide_modify ambipolar yes commands, which in turn requries
that the fix ambipolar is defined in your input
script. This fix defines a particular species as an ambipolar electron,
written as “e” in the reactions that follow. It also defines a list of
ambipolar ions, which are written as species with a trailing “+” sign in
the rules that follow. Neutral species (without “+”) can be any
non-ambipolar species.

These rules only apply to reactions that involve ambipolar species
(ions or electrons) as a reactant or product. Note that every
ambipolar reaction written here conserves charge. I.e. the net charge
of the reactants equals the net charge of the products.

Ambipolar dissociation reactions must list their reactants and products
in one of the following orders:

AB + e -> A + e + B
AB+ + e -> A+ + e + B

Ambipolar ionization reactions with 2 or 3 products must be in one of
the following orders:

A + B -> AB+ + e
A + e -> A+ + e + e

Ambipolar exchange reactions must be in one of the following orders:

AB+ + e -> A + B
AB+ + C -> A + BC+
C + AB+ -> A + BC+

Ambipolar recombination reactions must be in the following order:

A+ + e -> A
A + B+ -> AB+
A+ + B -> AB+

A third particle for recombination reactions can be specified in
the same way as described above for non-ambipolar recombination.

Styles with a kk suffix are functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for different random number, round-off and precision
issues.

These accelerated styles are part of the KOKKOS package. They are only
enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you
can use the suffix command in your input script.

See the Accelerating SPARTA section of the
manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

none

Related commands:

collide command
surf_react command

Default:

style = none

	Bird09(1,2)

	
	
	Bird, Chemical Reactions in DSMC Rarefied Gas Dynamics, Editor T Abe, AIP Conference Proceedings (2009).

	Bird11

	
	
	Bird, “The Q-K model for gas-phase chemical reaction rates”, Physics of Fluids, 23, 106101, (2011).

	Gallis09

	
	
	Gallis, R. B. Bond, and J. R. Torczynski, “A Kinetic-Theory Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows”, J Chem Phys, 131, 124311, (2009).

	Gallis10(1,2)

	
	
	Gallis, R. B. Bond, and J. R.Torczynski, “Assessment of Collision-Energy-Based Models for Atmospheric-Species Reactions in Hypersonic Flows”, J Thermophysics and Heat Transfer, (2010).

react_modify command

Syntax:

react_modify keyword values ...

	one or more keyword/value pairs may be listed

	keywords = recomb or rboost

recomb value = yes or no = enable or disable defined recombination reactions
rboost value = rfactor
 rfactor = boost probability of recombination reactions by this factor

Examples:

react_modify recomb no
react_modify rboost 100.0

Description:

Set parameters that affect how reactions are performed.

The recomb keyword turns on or off recombination reactions. It is only
relevant if recombination reactions were defined in the reaction file
read in by the react command. If the setting is no
then they will be disabled even if they were listed in the reaction
file. This is useful to turn recombination reactions off, to see if they
affect simulation results.

The rboost keyword is a setting for recombination reactions. It is
ignored if no recombination reactions exist, or the recomb keyword is
set to no. The rboost setting does not affect the overalll
statistical results of recombination reactions, but tries to improve
their computational efficiency. Recombination reactions typically occur
with very low probability, which means the code spends time testing for
reactions that rarely occur. If the rfactor is set to N > 1, then
recombination reactions are skipped N-1 out of N times, when one or more
such reactions is defined for a pair of colliding particles. A random
number us used to select on that probability. To compensate, when a
recombination reaction is actually tested for occurrence, its rate is
boosted by a factor of N, making it N times more likely to occur.

The smallest value rboost can be set to is 1.0, which effectively
applies no boost factor.

Important

Setting rboost too large could meant the probability of a recombination reaction becomes > 1.0, when it is does occur. SPARTA does not check for this, so you should estimate the largest boost factor that is safe to use for your model.

Restrictions:

none

Related commands:

react command

Default:

The option defaults are recomb = yes and rboost = 1000.0.

read_grid command

Syntax:

read_grid filename

	filename = name of grid file

Examples:

read_grid data.grid

Description:

Read a grid file in text format which lists the grid cell IDs to be
used to construct a hierarchical grid that overalys the simulation
domain defined by the create_box command.
The grid can also be defined by the create_grid command.

The grid file can be written by the write_grid command in a previous simulation, or be created by some pre-processing
tool. See Section 6.8 of the manual for
a definition of hierarchical grids and grid cell IDs as used by
SPARTA.

The specified file can be a text file or a gzipped text file (detected
by a .gz suffix). See the write_grid command for a
description of the format of the file.

The grid cell IDs read from the file to processors in a round-robin
fashion, which means in general the set of cells a processor owns will
not be contiguous in a geometric sense. They are thus assumed to be a
“dispersed” assignment of grid cells to each processor.

Important

See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell assignments and their relative performance trade-offs.
The balance_grid command can be used after the grid is read, to assign child cells to processors in different ways.
The fix balance command can be used to re-assign them in a load-balanced manner periodically during a running simulation.

Restrictions:

This command can only be used after the simulation box is defined by the
create_box command.

To read gzipped grid files, you must compile SPARTA with the
-DSPARTA_GZIP option - see Section 2.2
of the manual for details.

Related commands:

	create_box command,

	create_grid command

Default:

none

read_isurf command

Syntax:

read_isurf group-ID Nx Ny Nz filename thresh ablateID keyword args ...

	group-ID = group ID for which grid cells to perform calculation on

	Nx,Ny,Nz = grid cell extent for adding implicit surfs

	filename = binary file with grid corner point values

	thresh = threshold for surface definition, value > 0.0 and < 255.0

	ablateID = ID of a fix ablate command

	zero or more keyword/args pairs may be appended

	keyword = group or type or push or precision or read

group arg = group-ID
 group-ID = new or existing surface group to assign the surface elements to
type arg = tfile
 tfile = binary file with per grid cell surface type values
push arg = yes or no = whether to push corner point values to 0/255
precision arg = int or double
read arg = serial or parallel

Examples:

read_isurf portion 100 100 1 isurf.material.2d 180.5 group mesh
read_isurf subset 150 100 50 isurf.materials.3d 120.5 type isurf.type
read_isurf subset 150 100 50 isurf.materials.3d 120.5 read parallel

Description:

Read the geometry of a surface from the specified file. In SPARTA, a “surface” is a collection of surface elements that represent the surface of one or more physical objects which will be embedded in the global simulation box. Surfaces can be explicit or implicit.

This command reads implicit surfaces from a file containing grid corner point values which implicitly define the surface elements. See the read_surf command to read explicit surfaces from a different kind of file. See the Surface elements: explicit, implicit, distributed section of the manual for an explantion of explicit versus implicit surfaces as well as distributed versus non-distributed storage. You cannot mix explicit and implicit surfaces in the same simulation.

Surface elements are triangles in 3d or line segments in 2d. Surface elements for each physical object are required to be a complete, connected set that tile the entire surface of the object. See the discussion of watertight surfaces below. Implicit surfaces will always be watertight, due to the algorithm that defines them.

Here are simulation snapshots of 2d and 3d implicit surface models through which particles could flow. Click on either image for a larger image. In the 2d case, the colorings are by processor for sub-domains each owns. The implicit triangles for the 3d case were created via Marching Cubes (discussed below) from a tomographic image of a sample of NASA FiberForm (TM) material, used as a heat shield material on spacecraft.

[image: image0][image: image1]

Particles collide with surface elements as they advect. Each surface element is assigned to a collision model, specified by the surf_collide command which affects how a particle bounces off the surface. Each surface element can optionally be assigned to a reaction model, specified by the surf_react command which determines if any surface chemistry occurs during a collision. Statistics for each surface element due to their interactions with particles can be tallied via the compute isurf/grid command, time-averaged via the fix ave/grid command, and ouput via the dump surface command.

Surface elememts can be assigned to surface groups via the group surf command. Surface group IDs are used by other commands to operate on selected sets of elements. This command has a type keyword which can be used to help assign different elements to different groups.

Note that at some point, it will be possible to use the read_isurf command multiple times to read surfaces from multiple files and add them to the simulation domain, so long as the grid extent of the different commands does not overlap. However currently, that is not yet possible.

The format of a surface file for implicit surfaces is discussed below.

The tools directory contains a implicit_grid.py tool which can create implicit surface files in a randomized manner for different grid extents.

The specified group-ID must be the name of a grid cell group, as defined by the group grid command, which contains a set of grid cells, all of which are the same size, and which comprise a contiguous 3d array, with specified extent Nx by Ny by Nz. For 2d simulations, Nz must be specified as 1, and the group must comprise a 2d array of cells that is Nx by Ny. These are the grid cells in which implicit surfaces will be created.

The specified filename is for a binary file in the following format:

	first 4 bytes = Nxfile (integer)

	next 4 bytes = Nyfile (integer)

	next 4 bytes = Nzfile (integer), only for 3d simulations

	final N bytes = Nxfile by Nyfile by Nzfile grid corner point values
(integer)

For 2d simulations, the first 8 bytes store 2 integers in binary format: Nxfile and Nyfile. For 3d simulations, the first 12 bytes store 3 integers in binary format: Nxfile, Nyfile, and Nzfile. These are the dimensions of the grid of corner point values in the remainder of the file.

Important

The Nxfile, Nyfile, Nzfile values are for a 2d or 3d grid of corner points, which overlay the Nx by Ny by Nz grid of cells. In each dimension there is one more corner point than cells. Thus Nxfile = Nx+1, Nyfile = Ny+1, Nzfile = Nz+1 is required. SPARTA will give an error if the read_isurf Nx,Ny,Nz arguments do not match the first 2 or 3 integers in the file.

The remaining N bytes of the file are a series of corner point values. There are N = Nxfile * Nyfile values in 2d, and N = Nxfile * Nyfile * Nzfile values in 3d.

If the precision keyword is set to int, which is the default, then the values are one-byte integers, from 0 to 255 inclusive. If the precision keyword is set to double, then they are double-precision floating point values, from 0.0 to 255.0 inclusive. The one-byte integer format is what is typically used for tomographic images. The double-precision format is what is written by the write_isurf command. The latter is typically used when running an ablation model via the fix ablate command, where material is removed incrementally (from the corner point values) due to collisions of particles with the implicit surfaces.

Important

The corner point values are a 2d or 3d regular array which must be ordered as follows.
The x indices (1 to Nxfile) vary fastest, then the y indices (1 to Nyfile), and the z indices slowest (1 to Nzfile).
These will be assigned as corner points to each child grid cell in the Nx by Ny by Nz simulation domain.
For mapping corner points to grid cells, the ordering of the regular array of grid cells in the simulation domain is the same: their x indices vary fastest, then y, and their z indices very slowest.

The 8 corner point values (4 in 2d) for each grid cell are used with a marching cubes algorithm (marching squares in 2d) to infer a set of triangles (line segments in 2d) which are created in the grid cell.

Important

All triangles (line segments in 2d) created within the same grid cell are assigned the same surface ID, which is the grid cell ID.

A good description of the two algorithms is given on these Wikipedia webpages:

	https://en.wikipedia.org/wiki/Marching_cubes

	https://en.wikipedia.org/wiki/Marching_squares

The algorithms require a threshold value as input, which is the thresh value in the read_isurf command. For corner point values that bracket the threshold, it determines precisely where in the grid cell the corner points of the inferred implicit surface(s) will be.

The threshold must be specified as a floating point value such that 0 < thresh < 255. An integer value for thresh (e.g. 128 or 128.0) is not allowed, because that could induce implicit surfaces with zero length (2d line) or area (3d triangle).

Important

The aggregate set of implicit surfaces created by this procedure must represent a watertight object(s), the same as explained for the read_surf command, otherwise SPARTA will generate an error. The marching cube and square algorithms guarantee this.
However, if the Nx by Ny by Nz array of grid cells is interior to the simulation box, the entire outer boundary of the Nxfile by Nyfile by Nzfile grid of corner points should have values = 0.
This will insure no surface element touches the outer boundary (which would induce a non-watertight surface).
If the array of grid cells touches the simulation box face, then this is not a requirement (the same as if a set of explicit surfs were clipped at the box boundary).
However, if a boundary is periodic in a particular dimension and the array of grid cells touches that boundary, then you must insure the Nxfile by Nyfile by Nzfile grid of corner points spans that entire dimension, and its values are periodic in the same sense the simulation box is. E.g. if the y dimension is periodic, then the corner point values at the y = 1 and y = Nyfile lines or planes of the 2d or 3d corner point array must be identical.
Otherwise the aggregate set of implicit surfaces will not be consistent across the y periodic boundary.

The specified ablateID is the fix ID of a fix ablate command which has been previously specified in the input script. It stores the grid corner point values for each grid cell. It also has the code logic for converting grid corner point values to surface elements (line segments or triangles) and also optinally allows for the surface to be ablated during a simulation due to particles colliding with the surface elements.

The following optional keywords affect attributes of the read-in surface elements and how they are read.

Surface groups are collections of surface elements. Each surface element belongs to one or more surface groups; all elements belong to the “all” group, which is created by default. Surface group IDs are used by other commands to identify a group of suface elements to operate on. See the group surf command for more details.

Every surface element also stores a type which is a positive integer. Type values are useful for flagging subsets of elements. For example, implicit surface elemnts in different regions of the simulation box. Surface element types can be used to define surface groups. See the group surf command for details.

The group keyword specifies an extra surface group-ID to which all the implicit surface elements are assigned when created by the read-in corner points. All the created implicit elements are also assigned to the “all” group and to group-ID. If group-ID does not exist, a new surface group is created. If it does exist the create implicit surface elements are added to that group.

The type keyword triggers the reading of a per grid cell type file with the specified name tfile.

The specified filename is for a binary file in the following format:

	first 4 bytes = Nxfile (integer)

	next 4 bytes = Nyfile (integer)

	next 4 bytes = Nzfile (integer), only for 3d simulations

	final N bytes = Nxfile by Nyfile by Nzfile grid corner point values
(integer)

For 2d simulations, the first 8 bytes store 2 integers in binary format: Nxfile and Nyfile. For 3d simulations, the first 12 bytes store 3 integers in binary format: Nxfile, Nyfile, and Nzfile. These are the dimensions of the grid of corner point values in the remainder of the file.

Important

The Nxfile, Nyfile, Nzfile values are for a 2d or 3d grid of per-cell values, which overlay the Nx by Ny by Nz grid of cells. Thus Nxfile = Nx, Nyfile = Ny, Nzfile = Nz is required. SPARTA will give an error if the read_isurf Nx,Ny,Nz arguments do not match the first 2 or 3 integers in the file.

The remaining N bytes of the file are a series of one-byte integer values. There are N = Nxfile * Nyfile values in 2d, and N = Nxfile * Nyfile * Nzfile values in 3d. Each value is a single byte integer from 1 to 255 inclusive, since surface element type values must be > 0.

Important

The corner point values are a 2d or 3d regular array which must be ordered as follows. The x indices (1 to Nxfile) vary fastest, then the y indices (1 to Nyfile), and the z indices slowest (1 to Nzfile). These will be assigned to each grid cell in the Nx by Ny by Nz simulation domain. For mapping type values to grid cells, the ordering of the regular array of grid cells in the simulation domain is the same: their x indices vary fastest, then y, and their z indices very slowest.

The type value for each grid cell is used to assign a type value to each surface element created in that grid cell by the marching cubes or squares algorithm.

The push keyword specifies whether or not (yes or no) to “push” grid corner points values to their minimum/maximum possible values, i.e. 0 or 255 respectively. Each corner point value which is below (above) the specified thresh value is and is also entirely surrounded by neighbor corner point values which are also below (above) the thresh value is reset to 0 (255). In 2d, there are 8 corner points surrouding each interior corner point, i.e. all corner points on the face of the 2x2 set of grid cells which surround the interior point. In 3d, there are 26 corner points surrouding each interior corner point, i.e. all corner points on the face of the 2x2x2 set of grid cells which surround the interior point. The purpose of this operation is to reset corner point values to 0 if they are fully exterior to the surface object(s), and likewise to 255 if they are fully interior to the surface object(s).

Note that the push is a one-time operation, performed when the corner point values are read in, before the first set of surface elements are created by the marching cubes or marching squares algorithms.

The default for the push keyword is yes.

The read keyword specifies how the input file of grid corner point values is read. If the value is serial, which is the default, then only a single proc reads the file, a chunk of values at at time. They are broadcast to other processors, and each scans them for corner point values that correspond to grid cells it owns. If the value is parallel, then each proc opens the input file and reads a N/P portion of the corner point values, where N is the # of corner point values, and P is the # of procs. Additional communication is then performed to communicate the corner point values where they are needed by each grid cell that owns one of the corner point values. The parallel option can be faster for simulations with large grid corner point files and large numbers of processors.

Restrictions:

This command can only be used after the simulation box is defined by the create_box command, and after a grid has been created by the create_grid command. If particles already exist in the simulation, you must insure particles do not end up inside the set of implicit surfaces.

Related commands:

read_surf command
write_surf command
fix ablate command

Default:

The optional keyword defaults are group = all, type = no, push = yes, precision int, and read serial.

read_particles command

Syntax:

read_particles file Nstep

	file = dump file to read snapshot from

	Nstep = timestep to read

Examples:

read_particles dump.sphere 10500

Description:

Read a snapshot of particles from a previously created dump file and add
them to the simulation domain. This is a means of reading in particles
from a previous SPARTA simulation or created as output by another code.
The create_particles, fix emit/face, and
read_restart commands are alternate ways to
generate particles for a simulation.

The dump file must be in the SPARTA format created by the dump particles command which is described on its doc page.

Currently, each line of particle data in the file must have 8 fields in
the following order. At some point we may generalize this format.

id, type, x, y, z, vx, vy, vz

The id is any positive integer, which can simply be set to values from
1 to Nparticles if desired. The type is the species ID from 1 to
Nspecies. The value corresponds to the order in which species are
defined in the current input script via the species
command. The x,y,z values are the particle coordinates which must be
inside (or on the surface of) the simulation box. If a particle is
outside the box it will be skipped when the file is read. For 2d or
axisymmetric simulations z = 0.0 should be used, though SPARTA does not
check for this. The vx,vy,vz values are the particle velocity. The
rotational and vibrational energies for the new particles are set to
0.0.

When the reading of particles is complete, the number of particles read
is printed to the screen. If the number is smaller than the particles in
the file, it is because some were outside the simulation box.

A check is made for any particle inside a surface object which triggers
an error. However the check is only for grid cells entirely inside a
surface object. Particles in grid cells which are cut by surfaces are
not checked. It is your responsibility to insure particles close to
surfaces are actually outside the surface object. If this is not the
case, errors may be triggered once particles begin to move.

Restrictions:

none

Related commands:

create_particles command,
fix emit/face command

Default:

none

read_restart command

Syntax:

read_restart file keyword args ...

	file = name of binary restart file to read in

	zero or one keyword/args pair may be listed

	keywords = gridcut or balance

	gridcut arg = cutoff

cutoff = acquire ghost cells up to this far away (distance units)

	balance args = same as for balance_grid command

Examples:

read_restart save.10000
read_restart restart.*
read_restart flow.*.%
read_restart save.10000 gridcut -1.0
read_restart save.10000 balance rcb cell

Description:

Read in a previously saved simulation from a restart file. This allows
continuation of a previous run on the same or different number of
processors. Information about what is stored in a restart file is given
below. Basically this operation will re-create the simulation box with
all its particles, the hierarchical grid used to track particles, and
surface elements embedded in the grid, all with their attributes at the
point in time the information was written to the restart file by a
previous simluation.

Although restart files are saved in binary format to allow exact
regeneration of information, the random numbers used in the continued
run will not be identical to those used if the run had been continued.
Hence the new run will not be identical to the continued original run,
but should be statistically similar.

Important

Because restart files are binary, they may not be portable to other machines. SPARTA will print an error message if it cannot read a restart file for this reason.

If a restarted run is performed on the same number of processors as the
original run, then the assignment of grid cells (and their particles) to
processors will be the same as in the original simulation. If the
processor count changes, then the assignment will necessarily be
different. In particular, even if the original assignment was “clumped”,
meaning each processor’s cells were geometrically compact, the new
assignment will not be clumped; it will be “dispersed”. See Section 6.8 of the manual for an explanation of
clumped and dispersed grid cell assignments and their relative
performance trade-offs.

Note that the restart file contains the setting for the global gridcut command. If it is >= 0.0 and the assignment of
grid cells to processors is “dispersed” (as described in the preceeding
paragraph), and there are surface elements defined in the restart file,
an error will be triggered. This is because the read_restart command
needs to mark all the grid cells as inside vs outside the defined
surface and cannot do this without ghost cell information. As explained
on the doc page for the global gridcut command, ghost
cells cannot be setup with gridcut >= 0.0 and “dispersed” grid cells.

The solution is to use one of the two keywords listed above, either
gridcut or balance. The former allows you to reset the grid cutoff
to -1.0 so that ghost cells can be setup. Note however that this means
each processor will own a copy of all grid cells (at least until you
change it later), which may be undesirable or even impossible for large
problems if it requires too much memory. The other solution is to use
the balance keyword to trigger a re-balance of the grid cells to
processors as soon as the read_restart command reads them in. The
arguments for the balance keyword are identical to those for the
balance_grid command. If you choose a balancing
style that results in a “clumped” assignment, then ghost cells will be
setup successfully.

Similar to how restart files are written (see the
write_restart and restart
commands), the restart filename can contain two wild-card characters. If
a “*” appears in the filename, the directory is searched for all
filenames that match the pattern where “*” is replaced with a timestep
value. The file with the largest timestep value is read in. Thus, this
effectively means, read the latest restart file. It’s useful if you want
your script to continue a run from where it left off. See the
run command and its “upto” option for how to specify the
run command so it doesn’t need to be changed either.

If a “%” character appears in the restart filename, SPARTA expects a set
of multiple files to exist. The restart and
write_restart commands explain how such sets
are created. Read_restart will first read a filename where “%” is
replaced by “base”. This file tells SPARTA how many processors created
the set and how many files are in it. Read_restart then reads the
additional files. For example, if the restart file was specified as
save.% when it was written, then read_restart reads the files save.base,
save.0, save.1, … save.P-1, where P is the number of processors that
created the restart file.

Note that P could be the total number of processors in the previous
simulation, or some subset of those processors, if the fileper or
nfile options were used when the restart file was written; see the
restart and write_restart
commands for details. The processors in the current SPARTA simulation
share the work of reading these files; each reads a roughly equal subset
of the files. The number of processors which created the set can be
different than the number of processors in the current SPARTA
simulation. This can be a fast mode of input on parallel machines that
support parallel I/O.

A restart file stores only the following information about a simulation,
as specified by the associated commands:

	units

	dimension

	simulation box size and boundary conditions

	global settings

	particles with their individual attributes and custom attributes
defined by fixes

	particle species info

	mixtures

	geometry of the hierarchical grid that overlays the simulation domain
as created or read from a file

	geometry of all defined surface elements

	group definitions for grid cells and surface
elements

	current timestep number

No other information is stored in the restart file. Specifically,
information about these simulation entities and their associated
commands is NOT stored:

	random number seed

	computes

	fixes

	collision model

	chemistry (reaction) model

	surface collision models

	surface reaction models

	assignment of surfaces/boundaries to surface models

	variables

	regions

	output options for stats,
dump, restart files

	timestep size

This means any information specified in the original input script by
these commands needs to be re-specified in the restart input script,
assuming the continued simulation needs the information.

Also note that many commands can be used after a restart file is read,
to override a setting that was stored in the restart file. For example,
the global command can be used to reset the values of
its specified keywords.

In particular, take note of the following issues:

The status of time-averaging fixes, such as fix ave/time, fix ave/grid,
fix ave/surf, does not carry over into the
restarted run. E.g. if the ave running option is used with those
commands in the original script and again specified in the restart
script, the running averaged quantities do not persist into the new run.

The surf_modify command must be used in the
restart script to assign surface collision models, specified by the
surf_collide command, to all global boundaries of type “s”, and to any surfaces contained
in the restart file, as read in by the read_surf
command.

If a collision model is specified in the restart script, and the
collide_modify vremax or remain command is
used to enable Vremax and fractional collision count to persist for many
timesteps, no information about these quantities persists from the
original simulation to the restarted simulation. The initial run in the
restart script will re-initialize these data structures.

If a fix is used which defines custom attributes of particles, the
vectors or arrays for these attributes are stored in the restart file.
See the fix ambipolar command as an example; it
creates a custom vector called “ionambi” and a custom array called
“velambi”. However, the restart script must specify the same fix before
the first run command it uses, so that the same custom
attributes are re-created, otherwise the custom attribute info from the
restart file will be deleted.

Restrictions:

none

Related commands:

read_grid command,
read_surf command,
write_restart command,
restart command

Default:

none

read_surf command

Syntax:

read_surf filename keyword args ...

	filename = name of surface file

	zero or more keyword/args pairs may be appended

keyword = origin or trans or atrans or ftrans or scale or
rotate or transparent or invert or clip or group or
typeadd or particle or file

	origin args = Ox Oy Oz

	Ox,Oy,Oz = set origin of surface to this point (distance units)

	trans args = Dx Dy Dz

	Dx,Dy,Dz = translate origin by this displacement (distance units)

	atrans args = Ax Ay Az

	Ax,Ax,Az = translate origin to this absolute point (distance units)

	ftrans args = Fx Fy Fz

	Fx,Fy,Fz = translate origin to this fractional point in simulation box

	scale args = Sx Sy Sz

	Sx,Sy,Sz = scale surface by these factors around origin

	rotate args = theta Rx Ry Rz

	
	theta = rotate surface by this angle in counter-clockwise direction (degrees)

	Rx,Ry,Rz = rotate around vector starting at origin pointing in this direction

	transparent args

	args = none

	invert args

	args = none

	clip args = none or fraction

	fraction = push points close to the box boundary to the boundary (optional)

	group arg = group-ID

	group-ID = new or existing surface group to assign the surface elements to

	typeadd arg = Noffset

	Noffset = add Noffset to the type value of each element

	particle args = none or check or keep

	
	none = allow no particles in simulation when read surfs (default)

	check = delete particles inside surfs or in cells intersected by surfs

	keep = keep all particles

	file args = identical to those defined for the write_surf command

	this keyword must be last

Examples:

read_surf surf.sphere
read_surf surf.sphere group sphere2 typeadd 1
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip 1.0e-6
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip file tmp.surfs
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip file tmp.surfs.% points no nfile 32

Description:

Read the geometry of a surface from the specified file. In SPARTA, a
“surface” is a collection of surface elements that represent the
surface(s) of one or more physical objects which will be embedded in the
global simulation box. Surfaces can be explicit or implicit. This
command reads explicit surfaces from a file containing a list of
explicit surfaces. See the read_isurf command to
read implicit surfaces from a different kind of file. See the Howto 6.13 section of the manual for an
explanation of explicit versus implicit surfaces as well as distributed
versus non-distributed storage. You cannot mix explicit and implicit
surfaces in the same simulation.

Surface elements are triangles in 3d or line segments in 2d. Surface
elements for each physical object are required to be a complete,
connected set that tile the entire surface of the object. See the
discussion of watertight objects below.

Particles collide with surface elements as they advect. Each surface
element is assigned to a collision model, specified by the
surf_collide command which affects how a
particle bounces off the surface. Each surface element can optionally be
assigned to a reaction model, specified by the
surf_react command which determines if any surface
chemistry occurs during a collision. Statistics for each surface element
due to their interactions with particles can be tallied via the compute surf command, time-averaged via the fix ave/surf command, and ouput via the dump surface command.

Surface elements can be assigned to surface groups via the group surf command. Surface group IDs are used by other
commands to operate on selected sets of elements. This command has
group and typeadd keywords which can be used to help assign
different elements or different objects to different groups.

Explicit surface elements can be stored in a distributed fashion (each
processor only stores elements which overlap grid cells it owns or has a
ghost cell copy of). Or each processor can store a copy of all surface
elements (the default). See the global surfs command
to change this setting.

Note that the read_surf command can be used multiple times to read
multiple objects from multiple files and add them to the simulation
domain. The format of a surface file for explicit elements is discussed
below. Optional keywords allow the vertices in the file to be
translated, scaled, and rotated in various ways. This allows a single
surface file, e.g. containing a unit sphere, to be used multiple times
in a single simulation or in different simulations.

The tools directory contains tools that can create surface files with
simple geometric objects (spheres, blocks, etc). It also has tools that
can convert surface files in other formats to the SPARTA format for
explicit surfaces, e.g. for files created by a mesh-generation program.

If all the surface elements are contained in a single file, the
specified file can be a text file or a gzipped text file (detected by a
.gz suffix).

If a “%” character appears in the surface filename, SPARTA expects a set
of multiple files to exist. The write_surf command
explains how such sets are created. Read_surf will first read a filename
where “%” is replaced by “base”. This file tells SPARTA how many total
surfaces and files are in the set (i.e. just the header information
described below). The read_surf command then reads the additional files.
For example, if the surface file was specified as save.% when it was
written, then read_surf reads the files save.base, save.0, save.1, …
save.P-1, where P is the number of processors that created the surface
file.

Note that P could be the total number of processors in the previous
simulation, or some subset of those processors, if the fileper or
nfile options were used when the surface file was written; see the
write_surf command for details. The processors in the current
SPARTA simulation share the work of reading these files; each reads a
roughly equal subset of the files. The number of processors which
created the set can be different than the number of processors in the
current SPARTA simulation. This can be a fast mode of input on
parallel machines that support parallel I/O.

Format of a single surface file

The remainder of this section describes the format of a single surface
file, whether it is the only file or one of multiple files flagged with
a processor number.

A surface file for explicit surfaces has a header and a body. The header
appears first. The first line of the header is always skipped; it
typically contains a description of the file. Then lines are read one at
a time. Lines can have a trailing comment starting with ‘#’ that is
ignored. If the line is blank (only whitespace after comment is
deleted), it is skipped. If the line contains a header keyword, the
corresponding value is read from the line. If it doesn’t contain a
header keyword, the line begins the body of the file.

The body of the file contains one or more sections. The first line of a
section has only a keyword. The next line is skipped. The remaining
lines of the section contain values. The number of lines in a section
depends on the section keyword as described below. Zero or more blank
lines can be used between sections. Sections can appear in any order.

The formatting of individual lines in the surface file (indentation,
spacing between words and numbers) is not important except that header
and section keywords must be capitalized as shown and can’t have extra
white space between their words.

These are the recognized header keywords. Header lines can come in any
order. The value(s) are read from the beginning of the line. Thus the
keyword points should be in a line like “1000 points”.

	files = # of files in set (only for base file, see below)

	points = # of points in surface (optional, see below)

	lines = # of line segments in surface (only allowed for 2d)

	triangles = # of triangles in surface (only allowed for 3d)

	The files keyword

	only appears in the “base” file for a set of multiple files indicated by the “%” character in the filename. It tells SPARTA how many additional files exist in the set. A “base” file has no additional sections, i.e. no body.

The points keyword is optional (see below). For a set of multiple files, it cannot appear in the “base” file, but only in individual files in the set.

	The points, lines, triangles keywords

	refer to the number of points, lines, triangles in an individual file. Except in the case of a “base” file for a set of multiple files. In that case, the lines and triangles keywords give the number of lines or triangles in the entire set.

These are the recognized section keywords for the body of the file.

Points, Lines, Triangles

	The Points section consists of N consecutive entries, where N = # of
points, each of this form:

index x y z (for 3d)
index x y (for 2d)

The index value is ignored; it is only added to assist in examining the
file. When lines and triangles reference point indices they are simply
ordered from 1 to N, regardless of the actual value of the index in the
file. X,y,z are the coordinates of the point in distance units. Note
that for 2d simulations, z should be omitted.

Important

Unless points are on the surface of the simulation box, they will be part of multiple lines or triangles. However, there is no requirement that each point appear exactly once in the Points list.
For example, a point that is the common corner point of M triangles, could appear 1 or 2 or up to M times. However, if the same point appears multiple times in the Points list, the coordinates of all copies must be numerically identical, in order for SPARTA to verify the surface is a watertight object, as discussed below.

Important

The points keyword and Points section are not required. You must either use both or neither. As explained next, an optional format for the Lines or Triangles sections includes point coordinates directly with each line or triangle.

	The Lines section is only allowed for 2d simulations and consists of N
entries, where N = # of lines. All entries must be in the same format,
either A or B. If a Points section was included, use format A. If it was
not, use format B.

line-ID (type) p1 p2 # format A
line-ID (type) p1x p1y p2x p2y # format B

The line-ID is stored internally with the line. If the read_surf
commmand is reading a single file, the line-IDs should be unique values
from 1 to N where N is the number of lines specified in the header of
the file. For a set of multiple files, each line in the collection of
all files should have a unique ID, and the IDs should range from 1 to N,
where N is the number of lines specified in the base file. SPARTA does
not check line-IDs for uniqueness. Note that lines in an individual file
(single or multiple) do not need to be listed by ID order; they can be
in any order.

Important

If the read_surf command is used when lines already exist, i.e. to add new lines, then each line-ID is incremented by Nprevious = the # of lines that already exist.

	Type

	is an optional integer value which must be specified for all or none of the lines in the file. If used, it must be a positive integer value for each line. If not specified, the type of each line is set to 1. Line IDs and types can be used to assign lines to surface groups via the group surf command.

For format A, p1 and p2 are the indices of the 2 end points of the
line segment, as found in the Points section. Each is a value from 1 to
the # of points, as described above. For format B, (p1x,p1y) and
(p2x,p2y) are the (x,y) coordinates of the two points (1,2) in the line.

The ordering of p1, p2 is important as it defines the direction of
the outward normal for the line segment when a particle collides with
it. Molecules only collide with the “outer” edge of a line segment. This
is defined by a right-hand rule. The outward normal N = (0,0,1) x
(p2-p1). In other words, a unit z-direction vector is crossed into the
vector from p1 to p2 to determine the normal.

	The Triangles section is only allowed for 3d simulations and consists
of N entries, where N = # of triangles. All entries must be in the same
format, either A or B. If a Points section was included, use format A.
If it was not, use format B.

tri-ID (type) p1 p2 p3 # format A
tri-ID (type) p1x p1y p1z p2x p2y p2z p3x p3y p3z # format B

The tri-ID is stored internally with the line. If the read_surf commmand
is reading a single file, the tri-IDs should be unique values from 1 to
N where N is the number of triangles specified in the header of the
file. For a set of multiple files, each triangle in the collection of
all files should have a unique ID, and the IDs should range from 1 to N,
where N is the number of triangles specified in the base file. SPARTA
does not check tri-IDs for uniqueness. Note that triangles in an
individual file (single or multiple) do not need to be listed by ID
order; they can be in any order.

Important

If the read_surf command is used when triangles already exist, i.e. to add new triangles, then each tri-ID is incremented by Nprevious = the # of triangles that already exist.

	Type

	is an optional integer value which must be specified for all or none of the triangles in the file. If used, it must be a positive integer value for each triangle. If not specified, the type of each triangle is set to 1. Triangle IDs and types can be used to assign triangles to surface groups via the group surf command.

For format A, p1, p2, and p3 are the indices of the 3 corner
points of the triangle, as found in the Points section. Each is a value
from 1 to the # of points, as described above. For format B,
(p1x,p1y,p1z), (p2x,p2y,p2z), and (p3x,p3y,p3z) are the (x,y,z)
coordinates of the three corner points (1,2,3) of the triangle.

The ordering of p1, p2, p3 is important as it defines the
direction of the outward normal for the triangle when a particle
collides with it. Molecules only collide with the “outer” face of a
triangle. This is defined by a right-hand rule. The outward normal N =
(p2-p1) x (p3-p1). In other words, the edge from p1 to p2 is crossed
into the edge from p1 to p3 to determine the normal.

Optional keywords

The following optional keywords affect the geometry of the read-in
surface elements. The geometric transformations they describe are
performed in the order they are listed, which gives flexibility in how
surfaces can be manipulated. Note that the order may be important; e.g.
performing an origin operation followed by a rotate operation may
not be the same as a rotate operation followed by an origin
operation.

Most of the keywords perform a geometric transformation on all the
vertices in the surface file with respect to an origin point. By default
the origin is (0.0,0.0,0.0), regardless of the position of individual
vertices in the file.

The origin keyword resets the origin to the specified Ox,Oy,Oz. This
operation has no effect on the vertices.

The trans keyword shifts or displaces the origin by the vector
(Dx,Dy,Dz). It also displaces each vertex by (Dx,Dy,Dz).

The atrans keyword resets the origin to an absolute point (Ax,Ay,Az)
which implies a displacement (Dx,Dy,Dz) from the current origin. It also
displaces each vertex by (Dx,Dy,Dz).

The ftrans keyword resets the origin to a fractional point (Fx,Fy,Fz).
Fractional means that Fx = 0.0 is the lower edge/face in the x-dimension
and Fx = 1.0 is the upper edge/face in the x-dimension, and similarly
for Fy and Fz. This change of origin implies a displacement (Dx,Dy,Dz)
from the current origin. This operation also displaces each vertex by
(Dx,Dy,Dz).

The scale keyword does not change the origin. It computes the
displacement vector of each vertex from the origin (delx,dely,delz) and
scales that vector by (Sx,Sy,Sz), so that the new vertex coordinate is
(Ox + Sx*delx,Oy + Sy*dely,Oz + Sz*delz).

The rotate keyword does not change the origin. It rotates the
coordinates of all vertices by an angle theta in a counter-clockwise
direction, around the vector starting at the origin and pointing in the
direction Rx,Ry,Rz. Any rotation can be represented by an appropriate
choice of origin, theta and (Rx,Ry,Rz).

The transparent keyword flags all the read in surface elements as transparent,
meaning particles pass through them. This is useful for tallying flow
statistics. The surf_collide transparent command
must also be used to assign a transparent collision model to those surface
elements. The compute surf will tally fluxes
differently for transparent surf elements. The Section
6.15 doc page provides an overview of transparent
surfaces. See those doc pages for details.

The invert keyword does not change the origin or any vertex
coordinates. It flips the direction of the outward surface normal of
each surface element by changing the ordering of its vertices. Since
particles only collide with the outer surface of a surface element, this
is a mechanism for using a surface files containing a single sphere (for
example) as either a sphere to embed in a flow field, or a spherical
outer boundary containing the flow.

The clip keyword does not change the origin. It truncates or “clips” a
surface that extends outside the simulation box in the following manner.
In 3d, each of the 6 clip planes represented by faces of the global
simulation box are considered in turn. Any triangle that straddles the
face (with points on both sides of the clip plane), is truncated at the
plane. New points along the edges that cross the plane are created. A
triangle may also become a trapezoid, in which case it turned into 2
triangles. Then all the points on the side of the clip plane that is
outside the box, are projected onto the clip plane. Finally, all
triangles that lie in the clip plane are removed, as are any points that
are unused after the triangle removal. After this operation is repeated
for all 6 faces, the remaining surface is entirely inside the simulation
box, though some of its triangles may include points on the faces of the
simulation box. A similar operation is performed in 2d with the 4 clip
edges represented by the edges of the global simulation box.

Important

If a surface you clip crosses a periodic boundary, as specified by the boundary command, then the clipping that takes place must be consistent on both the low and high end of the box (in the periodic dimension). This means any point on the boundary that is generated by the clip operation should be generated twice, once on the low side of the box and once on the high side. And those two points must be periodic images of each other, as implied by periodicity.
If the surface you are reading does not clip in this manner, then SPARTA will likely generate an error about mis-matched or inconsistent cells when it attempts to mark all the grid cells and their corner points as inside vs outside the surface.

If you use the clip keyword, you should check the resulting statistics
of the clipped surface printed out by this command, including the
minimum size of line and triangle edge lengths. It is possible that very
short lines or very small triangles will be created near the box surface
due to the clipping operation, depending on the coordinates of the
initial unclipped points.

If this is the case, an optional fraction argument can be appended to
the clip keyword. Fraction is a unitless value which is converted to
a distance delta in each dimension where delta = fraction * (boxhi -
boxlo). If a point is nearer than delta to the lo or hi boundary in a
dimension, the point is moved to be on the boundary, before the clipping
operation takes place. This can prevent tiny surface elements from being
created due to clipping. If fraction is not specified, the default
value is 0.0, which means points are not moved. If specified, fraction
must be a value between 0.0 and 0.5.

Note that the clip operation may delete some surface elements and
create new ones. Likewise for the points that define the end points or
corner points of surface element lines (2d) or triangles (3d). The
resulting altered set of surface elements can be written out to a file
by the write_surf command, which can then be used
an input to a new simulation or for post-processing and visualization.

Important

When the clip operation deletes or adds surface elements, the line-IDs or tri-IDs will be renumbered to produce IDs that are consecutive values from 1 to the # of surface elements. The ID of a surface element that is unclipped may change due to this reordering.

The following optional keywords affect group and type settings for the
read-in surface elements and output of the elements. Also how particles
are treated when surface elements are added.

Surface groups are collections of surface elements. Each surface element
belongs to one or more surface groups; all elements belong to the “all”
group, which is created by default. Surface group IDs are used by other
commands to identify a group of suface elements to operate on. See the
group surf command for more details.

Every surface element also stores a type which is a positive integer.
Type values are useful for flagging subsets of elements or different
objects in the surface file. For example, a patch of triangles on a
sphere. Or one sphere out of several that the file contains. Surface
element types can be used to define surface groups.
See the group surf command for details.

The group keyword specifies an extra surface group-ID to assign all
the read-in surface elements to. All the read-in elements are assigned
to the “all” group and to group-ID. If group-ID does not exist, a
new surface group is created. If it does exist the read-in surface
elements are added to that group.

The typeadd keyword defines an Noffset value which is added to the
type of each read-in surface element. The default is Noffset = 0, which
means the read-in type values are not altered. If type values are not
included in the file, they default to 1 for every element, but can still
be altered by the typeadd keyword.

Note that use of the group and typeadd keywords allow the same
surface file to be read multiple times (e.g. with different origins,
tranlations, rotations, etc) to define multiple objects, and assign
their surface elements to different groups or different type values.

The particle keyword determines how particles in the simulation are
affected by the new surface elements. If the setting is none, which is
the default, then no particles can exist in the simulation. If the
setting is check, then particles in grid cells that are inside the new
watertight surface object(s) or in grid cells intersected by the new
surface elements are deleted. This is to insure no particles will end up
inside a surface object, which will typically generate errors when
particles move. If the setting is keep then no particles are deleted.
It is up to you to insure that no particles are inside surface
object(s), else an error may occur later. This setting can be useful if
a remove_surf was used to remove a surface
object, and a new object is being read in, and you know the new object
is smaller than the one it replaced. E.g. for a model of a shrinking or
ablating object.

If the file keyword is used, the surfaces will be written out to the
specified filename immediately after they are read in. The arguments
for this keyword are identical to those used for the
write_surf command. This includes a file name with
optional “*” and “%” wildcard characters, as well as its optional
keywords.

Important

The file keyword must be the last keyword specified with the read_isurf command. This is because all the remaining arguments are passed to the write_surf command.

The format for the output file is the same as the one written by the
write_surf command, or read by this command. Note
that it can be useful to write out a new surface file after reading one
if clipping was performed; the new file will contain the surface element
altered by clipping and will not contain any surface elements removed by
clipping.

Restrictions:

This command can only be used after the simulation box is defined by the
create_box command, and after a grid has been
created by the create_grid command. If particles
already exist in the simulation, you must insure particles do not end up
inside the added surfaces. See the particle keyword for options with
regard to particles.

To read gzipped surface files, you must compile SPARTA with the
-DSPARTA_GZIP option - see Section 2.2
of the manual for details.

The clip keyword cannot be used when the global surfs explicit/distributed command has been used. This is
because we have not yet figured out how to clip distributed surfaces.

Every vertex in the final surface (after translation, rotation, scaling,
etc) must be inside or on the surface of the global simulation box. Note
that using the clip operation guarantees that this will be the case.

The surface elements in a single surface file must represent a
“watertight” surface. For a 2d simulation this means that every point is
part of exactly 2 line segments. For a 3d simulation it means that every
triangle edge is part of exactly 2 triangles. Exceptions to these rules
allow for triangle edges (in 3d) that lie entirely in a global face of
the simulation box, or for line points (in 2d) that are on a global edge
of the simulation box. This can be the case after clipping, which allows
for use of watertight surface object (e.g. a sphere) that is only
partially inside the simulation box, but which when clipped to the box
becomes non-watertight, e.g. half of a sphere.

Note that this definition of watertight does not require that the
surface elements in a file represent a single physical object; multiple
objects (e.g. spheres) can be represented, provided each is watertight.

Another restriction on surfaces is that they do not represent an object
that is “infinitely thin”, so that two sides of the same object lie in
the same plane (3d) or on the same line (2d). This will not generate an
error when the surface file is read, assuming the watertight rule is
followed. However when particles collide with the surface, errors will
be generated if a particle hits the “inside” of a surface element before
hitting the “outside” of another element. This can occur for infinitely
thin surfaces due to numeric round-off.

When running a simulation with multiple objects, read from one or more
surface files, you should insure they do not touch or overlap with each
other. SPARTA does not check for this, but it will typically lead to
unphysical particle dynamics.

Related commands:

read_isurf command,
write_surf command

Default:

The default origin for the vertices in the surface file is (0,0,0). The
defaults for group = all, type = no, toffset = 0, particle = none.

region command

Syntax:

region ID style args keyword value ...

	ID = user-assigned name for the region

	style = block or cylinder or plane or sphere or union or
intersect

	block args = xlo xhi ylo yhi zlo zhi

	
	xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all dimensions (distance units)

	cylinder args = dim c1 c2 radius lo hi

	
	dim = x or y or z = axis of cylinder

	c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)

	radius = cylinder radius (distance units)

	lo,hi = bounds of cylinder in dim (distance units)

	plane args = px py pz nx ny nz

	
	px,py,pz = point on the plane (distance units)

	nx,ny,nz = direction normal to plane (distance units)

	sphere args = x y z radius

	
	x,y,z = center of sphere (distance units)

	radius = radius of sphere (distance units)

	union args = N reg-ID1 reg-ID2 …

	
	N = # of regions to follow, must be 2 or greater

	reg-ID1,reg-ID2, … = IDs of regions to join together

	intersect args = N reg-ID1 reg-ID2 …

	
	N = # of regions to follow, must be 2 or greater

	reg-ID1,reg-ID2, … = IDs of regions to intersect

	zero or more keyword/value pairs may be appended

	keyword = side

	side value = in or out

	
	in = the region is inside the specified geometry

	out = the region is outside the specified geometry

Examples:

region 1 block -3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 -5.0 INF
region outside union 4 side1 side2 side3 side4
region slab plane 0.2 0 0 1 0 0

Description:

This command defines a geometric region of space. Various other commands
use regions. See the group grid, group surf, and dump_modify commands
for examples.

Commands which use regions typically test whether a point is contained
in the region or not. For this purpose, coordinates exactly on the
region boundary are considered to be interior to the region. This means,
for example, for a spherical region, a point on the sphere surface would
be part of the region if the sphere were defined with the side in
keyword, but would not be part of the region if it were defined using
the side out keyword. See more details on the side keyword below.

The lo/hi values for the block or cylinder styles can be specified
as INF which means a large negative or positive number (1.0e20).

For style cylinder, the c1,c2 params are coordinates in the 2 other
dimensions besides the cylinder axis dimension. For dim = x, c1/c2 =
y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third
example above specifies a cylinder with its axis in the y-direction
located at x = 2.0 and z = 3.0, with a radius of 5.0, and extending in
the y-direction from -5.0 to infinity.

For style plane one point and the normal vector define the plane limiting the region. All grids to one side of this plane belong to the region. Which side is determined by the normal and the keyword side. Thus, the fourth example above specifies a region consisting of the semispace located to the right of the point x=0.2 (normal pointing in the direction of +x).

The union style creates a region consisting of the volume of all the
listed regions combined. The intersect style creates a region
consisting of the volume that is common to all the listed regions.

Important

Regions in SPARTA are always 3d geometric objects, regardless of whether the dimension of the simulation 2d or 3d. Thus when using regions in a 2d simulation, for example, you should be careful to define the region so that its intersection with the 2d x-y plane of the simulation has the 2d geometric extent you want.

The side keyword determines whether the region is considered to be
inside or outside of the specified geometry. Using this keyword in
conjunction with union and intersect regions, complex geometries can
be built up. For example, if the interior of two spheres were each
defined as regions, and a union style with side = out was
constructed listing the region-IDs of the 2 spheres, the resulting
region would be all the volume in the simulation box that was outside
both of the spheres.

Restrictions:

none

Related commands:

dump_modify command

Default:

The option default is side = in.

remove_surf command

Syntax:

remove_surf surfID

	surfID = group ID for which surface elements to remove

Examples:

remove_surf topsurf

Description:

Remove a group of surface elements that have previously been read-in via
the read_surf command. The group surf or read_surf can be used to
assign each surface element to one or more groups. This command removes
all surface elements in the specified surfID group.

Note that the remaining surface elements must still constitute a
“watertight” surface or an error will be generated. The definition of
watertight is explained in the Restrictions section of the
read_surf doc page.

After surface elements have been deleted, any surface points that are no
longer part of a surface element are also deleted. The remaining surface
points and elements are renumbered to create compressed, contiguous
lists. The new list of surface elements can be output via the
write_surf command.

Restrictions:

none

Related commands:

read_surf command

Default:

none

reset_timestep command

Syntax:

reset_timestep N

	N = timestep number

Examples:

reset_timestep 0
reset_timestep 4000000

Description:

Set the timestep counter to the specified value. This command normally
comes after the timestep has been set by reading a restart file via the
read_restart command, or a previous simulation
advanced the timestep.

The create_box command sets the timestep to 0; the
read_restart command sets the timestep to the
value it had when the restart file was written.

Restrictions:

none

This command cannot be used when any fixes are defined that keep track
of elapsed time to perform certain kinds of time-dependent operations.
Examples are the fix ave/time, fix ave/grid, and fix ave/surf commands. Thus these fixes should be
specified after the timestep has been reset.

Resetting the timestep clears flags for computes that
may have calculated some quantity from a previous run. This means these
quantity cannot be accessed by a variable in between runs until a new
run is performed. See the variable command for more
details.

Related commands:

none

Default:

none

restart command

Syntax:

restart 0
restart N root keyword value ...
restart N file1 file2 keyword value ...

	N = write a restart file every this many timesteps

	N can be a variable (see below)

	root = filename to which timestep # is appended

	file1,file2 = two full filenames, toggle between them when writing
file

	zero or more keyword/value pairs may be appended

	keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors
nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

Examples:

restart 0
restart 1000 flow.restart
restart 1000 restart.*.equil
restart 10000 flow.%.1 flow.%.2 nfile 10
restart v_mystep flow.restart

Description:

Write out a binary restart file every so many timesteps, in either or
both of two modes, as a run proceeds. A value of 0 means do not write
out any restart files. The two modes are as follows. If one filename is
specified, a series of filenames will be created which include the
timestep in the filename. If two filenames are specified, only 2 restart
files will be created, with those names. SPARTA will toggle between the
2 names as it writes successive restart files.

Note that you can specify the restart command twice, once with a single
filename and once with two filenames. This would allow you, for example,
to write out archival restart files every 100000 steps using a single
filenname, and more frequent temporary restart files every 1000 steps,
using two filenames. Using restart 0 will turn off both modes of output.

Similar to dump files, the restart filename(s) can
contain two wild-card characters.

If a “*” appears in the single filename, it is replaced with the current
timestep value. This is only recognized when a single filename is used
(not when toggling back and forth). Thus, the 3rd example above creates
restart files as follows: restart.1000.equil, restart.2000.equil, etc.
If a single filename is used with no “*”, then the timestep value is
appended. E.g. the 2nd example above creates restart files as follows:
flow.restart.1000, flow.restart.2000, etc.

If a “%” character appears in the restart filename(s), then one file is
written for each processor and the “%” character is replaced with the
processor ID from 0 to P-1. An additional file with the “%” replaced by
“base” is also written, which contains global information. For example,
the files written on step 1000 for filename restart.% would be
restart.base.1000, restart.0.1000, restart.1.1000, …,
restart.P-1.1000. This creates smaller files and can be a fast mode of
output and subsequent input on parallel machines that support parallel
I/O. The optional fileper and nfile keywords discussed below can
alter the number of files written.

Restart files are written on timesteps that are a multiple of N but not
on the first timestep of a run or minimization. You can use the
write_restart command to write a restart file
before a run begins. A restart file is not written on the last timestep
of a run unless it is a multiple of N. A restart file is written on the
last timestep of a minimization if N > 0 and the minimization converges.

Instead of a numeric value, N can be specifed as an equal-style variable, which should be specified as v_name, where
name is the variable name. In this case, the variable is evaluated at
the beginning of a run to determine the next timestep at which a restart
file will be written out. On that timestep, the variable will be
evaluated again to determine the next timestep, etc. Thus the variable
should return timestep values. See the stagger() and logfreq() and
stride() math functions for equal-style variables,
as examples of useful functions to use in this context. Other similar
math functions could easily be added as options for equal-style variables.

For example, the following commands will write restart files every step
from 1100 to 1200, and could be useful for debugging a simulation where
something goes wrong at step 1163:

variable s equal stride(1100,1200,1)
restart v_s tmp.restart

See the read_restart command for information
about what is stored in a restart file.

Restart files can be read by a read_restart
command to restart a simulation from a particular state. Because the
file is binary (to enable exact restarts), it may not be readable on
another machine.

The optional nfile or fileper keywords can be used in conjunction
with the “%” wildcard character in the specified restart file name(s).
As explained above, the “%” character causes the restart file to be
written in pieces, one piece for each of P processors. By default P =
the number of processors the simulation is running on. The nfile or
fileper keyword can be used to set P to a smaller value, which can be
more efficient when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf
= 4, and the simulation is running on 100 processors, 4 files will be
written, by processors 0,25,50,75. Each will collect information from
itself and the next 24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one
file for every Np processors. For example, if Np = 4, every 4th
processor (0,4,8,12,etc) will collect information from itself and the
next 3 processors and write it to a restart file.

Restrictions:

none

Related commands:

write_restart command,
read_restart command

Default:

restart 0

run command

Syntax:

run N keyword values ...

	N = # of timesteps

	zero or more keyword/value pairs may be appended

	keyword = upto or start or stop or pre or post or every

	upto value = none

	start value = N1: timestep at which 1st run started

	stop value = N2: timestep at which last run will end

	pre value = no or yes

	post value = no or yes

	every values = M c1 c2 …

	M = break the run into M-timestep segments and invoke one or more commands between each segment

	c1,c2,…,cN = one or more SPARTA commands, each enclosed in quotes

c1 = NULL means no command will be invoked

Examples:

run 10000
run 1000000 upto
run 100 start 0 stop 1000
run 1000 pre no post yes
run 100000 start 0 stop 1000000 every 1000 "print 'Temp = $t'"
run 100000 every 1000 NULL

Description:

Run or continue a simulation for a specified number of timesteps.

A value of N = 0 is acceptable; only the statistics of the system are
computed and printed without taking a timestep.

The upto keyword means to perform a run starting at the current
timestep up to the specified timestep. E.g. if the current timestep is
10,000 and “run 100000 upto” is used, then an additional 90,000
timesteps will be run. This can be useful for very long runs on a
machine that allocates chunks of time and terminate your job when time
is exceeded. If you need to restart your script multiple times (reading
in the last restart file), you can keep restarting your script with the
same run command until the simulation finally completes.

The start or stop keywords can be used if multiple runs are being
performed and you want a variable or
fix command that changes some value over time (e.g.
target temperature) to make the change across the entire set of runs and
not just a single run.

For example, consider these commands followed by 10 run commands:

variable myTemp equal ramp(300,500)
surf_collide 1 diffuse v_myTemp 0.5
run 1000 start 0 stop 10000
run 1000 start 0 stop 10000
...
run 1000 start 0 stop 10000

The ramp() function in the variable and its use in
the “surf_collide” command will ramp the target temperature from 300 to
500 during a run. If the run commands did not have the start/stop
keywords (just “run 1000”), then the temperature would ramp from 300 to
500 during the 1000 steps of each run. With the start/stop keywords, the
ramping takes place smoothly over the 10000 steps of all the runs
together.

The pre and post keywords can be used to streamline the setup,
clean-up, and associated output to the screen that happens before and
after a run. This can be useful if you wish to do many short runs in
succession (e.g. SPARTA is being called as a library which is doing
other computations between successive short SPARTA runs).

By default (pre and post = yes), SPARTA zeroes statistical counts before
every run and initializes other fixes and
computes as needed. And after every run it gathers
and prints timings statistics. If a run is just a continuation of a
previous run (i.e. no settings are changed), the initial computation is
not necessary. So if pre is specified as “no” then the initial setup
is skipped, except for printing statistical info. Note that if pre is
set to “no” for the very 1st run SPARTA performs, then it is overridden,
since the initial setup computations must be done.

Important

If your input script changes settings between 2 runs (e.g. adds a fix or compute), then the initial setup must be performed.
SPARTA does not check for this, but it would be an error to use the pre no option in this case.

If post is specified as “no”, the full timing and statistical output
is skipped; only a one-line summary timing is printed.

The every keyword provides a means of breaking a SPARTA run into a
series of shorter runs. Optionally, one or more SPARTA commands (c1, c2,…, cN)
will be executed in between the short runs. If used, the
every keyword must be the last keyword, since it has a variable number
of arguments. Each of the trailing arguments is a single SPARTA command,
and each command should be enclosed in quotes, so that the entire
command will be treated as a single argument. This will also prevent any
variables in the command from being evaluated until it is executed
multiple times during the run. Note that if a command itself needs one
of its arguments quoted (e.g. the print command), then
you can use a combination of single and double quotes, as in the example
above or below.

The every keyword is a means to avoid listing a long series of runs
and interleaving commands in your input script. For example, a
print command could be invoked or a fix
could be redefined, e.g. to reset a load balancing parameter. Or this
could be useful for invoking a command you have added to SPARTA that
wraps some other code (e.g. as a library) to perform a computation
periodically during a long SPARTA run. See Section 8 of the manual for info about how to add new
commands to SPARTA. See Section 6.7 of
the manual for ideas about how to couple SPARTA to other codes.

With the every option, N total steps are simulated, in shorter runs of
M steps each. After each M-length run, the specified commands are
invoked. If only a single command is specified as NULL, then no command
is invoked. Thus these lines:

compute t temp
variable myT equal c_t
run 6000 every 2000 "print 'Temp = $myT'"

are the equivalent of:

compute t temp
variable myT equal c_t
run 2000
print "Temp = $myT"
run 2000
print "Temp = $myT"
run 2000
print "Temp = $myT"

which does 3 runs of 2000 steps and prints the x-coordinate of a
particular atom between runs. Note that the variable “$q” will be
evaluated afresh each time the print command is executed.

Note that by using the line continuation character “&”, the run every
command can be spread across many lines, though it is still a single
command:

run 100000 every 1000 &
 "print 'Minimum value = $a'" &
 "print 'Maximum value = $b'" &
 "print 'Temp = $c'"

If the pre and post options are set to “no” when used with the
every keyword, then the 1st run will do the full setup and the last
run will print the full timing summary, but these operations will be
skipped for intermediate runs.

IMPORTANT NOTE: You might hope to specify a command that exits the run
by jumping out of the loop, e.g.

compute t temp
variable T equal c_t
run 10000 every 100 "if '$T < 300.0' then 'jump SELF afterrun'"

Unfortunately this will not currently work. The run command simply
executes each command one at a time each time it pauses, then continues
the run. You can replace the jump command with a simple
quit command and cause SPARTA to exit during the middle
of a run when the condition is met.

Restrictions:

The number of specified timesteps N must fit in a signed 32-bit integer,
so you are limited to slightly more than 2 billion steps (2^31) in a
single run. However, you can perform successive runs to run a simulation
for any number of steps (ok, up to 2^63 steps).

Related commands:

none

Default:

The option defaults are start = the current timestep, stop = current
timestep + N, pre = yes, and post = yes.

scale_particles command

Syntax:

scale_particles mix-ID factor

	mix-ID = ID of mixture to use when scaling particles

	factor = scale factor

Examples:

scale_particles air 0.5
scale_particles air 4.0

Description:

Scale the number of particles in the simulation by cloning or deleting
individual particles. This can be useful between runs, or after reading
a restart file, to increase or decrease the particle count before a new
run command is issued, as if the global fnum value had been changed. For example, an initial
coarse simulation can be performed, followed by a simulation at higher
resolution.

Only particles of species in the specified mixture are considered for
cloning/deleting. See the mixture command for how it
defines a collection of species.

The specified factor can be any value >= 0.0.

If factor < 1.0, then for each particle, a random number R is
generated. If R > factor, the particle is deleted.

If factor > 1.0, then for each particle additional particles may be
created, by cloning all attributes of the original particle, except for
a new random particle ID assigned to each new particle. E.g. if factor
= 3.4, then two extra particles are created, and a 3rd is created with
probability 0.4.

Restrictions:

none

Related commands:

create_particles command

Default:

none

seed command

Syntax:

seed Nvalue

	Nvalue = seed for a random number generator (positive integer)

Examples:

seed 5838959

Description:

This command sets the random number seed for a master random number
generator. This generator is used by SPARTA to initialize auxiliary
random number generators, which in turn are used for all operations in
the code requiring random numbers. This means you can effectively run a
statistically-independent simulation by simply changing this single
seed.

The various random number generators used in SPARTA are portable, which
means they produce the same random number streams on any machine.

This command is required to perform a SPARTA simulation.

Restrictions:

none

Related commands:

none

Default:

none

shell command

Syntax:

shell cmd args

	cmd = cd or mkdir or mv or rm or rmdir or putenv or
arbitrary command

cd arg = dir
 dir = directory to change to
mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create
mv args = old new
 old = old filename
 new = new filename
rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete
rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete
putenv args = var1=value1 var2=value2
 var=value = one of more definitions of environment variables
anything else is passed as a command to the shell for direct execution

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.sparta hold/log.1
shell rm TMP/file1 TMP/file2
shell putenv SPARTA_DATA=../../data
shell my_setup file1 10 file2
shell my_post_process 100 dump.out

Description:

Execute a shell command. A few simple file-based shell commands are
supported directly, in Unix-style syntax. Any command not listed above
is passed as-is to the C-library system() call, which invokes the
command in a shell.

This is means to invoke other commands from your input script. For
example, you can move files around in preparation for the next section
of the input script. Or you can run a program that pre-processes data
for input into SPARTA. Or you can run a program that post-processes
SPARTA output data.

With the exception of cd, all commands, including ones invoked via a
system() call, are executed by only a single processor, so that
files/directories are not being manipulated by multiple processors.

The cd cmd executes the Unix “cd” command to change the working
directory. All subsequent SPARTA commands that read/write files will use
the new directory. All processors execute this command.

The mkdir cmd executes the Unix “mkdir” command to create one or more
directories.

The mv cmd executes the Unix “mv” command to rename a file and/or move
it to a new directory.

The rm cmd executes the Unix “rm” command to remove one or more files.

The rmdir cmd executes the Unix “rmdir” command to remove one or more
directories. A directory must be empty to be successfully removed.

The putenv cmd defines or updates an environment variable directly.
Since this command does not pass through the shell, no shell variable
expansion or globbing is performed, only the usual substitution for
SPARTA variables defined with the variable command
is performed. The resulting string is then used literally.

Any other cmd is passed as-is to the shell along with its arguments as
one string, invoked by the C-library system() call. For example, these
lines in your input script:

variable n equal 10
variable foo string file2
shell my_setup file1 $n ${foo}

would be the same as invoking

% my_setup file1 10 file2

from a command-line prompt. The executable program “my_setup” is run
with 3 arguments: file1 10 file2.

Restrictions:

SPARTA does not detect errors or print warnings when any of these
commands execute. E.g. if the specified directory does not exist,
executing the cd command will silently do nothing.

Related commands:

none

Default:

none

species command

Syntax:

species file ID1 ID2 ... keyword value ...

	file = filename with species info

	ID1, ID2, … = one or more species names listed in file

	multi-species abbreviations can also be used (see below)

	zero or more keyword/value pairs may be appended

	keyword = vibfile

vibfile value = vfile = filename for extra vibrational info

Examples:

species air.species air
species ar.species Ar
species air.species air CO2 CO vibfile co2.species.vib
species myfile H+ Cl- HCl

Description:

Define one or more particle species to use in the simulation. This
command can be used as many times as desired to add species to the list
of species that the simulation recognizes.

The specified file is the name of a file containing definitions for a
list of species, not all of which need to specified in this command, or
used in a simulation. Only those requested by ID will be extracted from
the file and they must be present in the file. The format of the species
file is discussed below. The data directory in the SPARTA distribution
contains several species files, all with the suffix “.species”.

Each ID is a character string used to identify the species, such as N
or O2 or NO or D or Fe-. The string can be any combination of
alphanumeric characters or “+”, “-”, or underscore.

Instead of specifying IDs for single species, one of several pre-defined
multi-species names can be used, each of which is expanded into a list
of several individual species IDs. The list of currently recognized
abbreviations is as follows:

	air = N, O, NO

These abbreviations can be used in combination with single-species IDs
as in the 3rd example above.

The format of a species file is as follows. Comments or blank lines are
allowed in the file. Comment lines start with a “#” character. All other
lines must have the following format with values separated by
whitespace:

species-ID prop1 prop2 ... prop9 prop10

The species-ID is a string that will be matched against the requested
species-ID, as described above. The properties are as follows:

	prop1 = molecular weight (atomic mass units, e.g. 16 for oxygen)

	prop2 = molecular mass (mass units)

	prop3 = rotational degrees of freedom (integer, unitless)

	prop4 = inverse rotational relaxtion number (unitless)

	prop5 = vibrational degrees of freedom (integer, unitless)

	prop6 = inverse vibrational relaxation number (unitless)

	prop7 = vibrational temperature (temperature units)

	prop8 = species weight (unitless)

	prop9 = multiple of electon charge (1 for a proton)

The allowed values for rotational degrees of freedom (rotdof = prop3)
are 0,2,3. Typically, 0 = monatomic species, 2 = diatomic, 3 = anything
else.

The allowed values for vibrational degrees of freedom (vibdof = prop5)
are 0,2,4,6,8. The associated number of vibrational modes is vibdof
divided by 2. Typically, 0 modes = monatomic species, 1 mode = diatomic,
2/3/4 modes = triatomic or larger molecules.

Note that all the listed rotational and vibrational values must be
specified for each species, but in cases where they are not used by
SPARTA, they can simply be specified as 0.0. Whether or not the values
are used for a species depends on the value of rotdof and vibdof.
Whether the values are used in a simulation also depends on the settings
specified for the rotation and vibration keywords of the
collide_modify command.

Specifically, if prop3 for rotdof = 0, then prop4 is ignored. If prop5
for vibdof = 0, then prop6 and prop7 are ignored.

If vibdof = 4,6,8, then information for 2,3,4 vibrational modes can be
specified for the species in a separate file using the optional
vibfile keyword, as discussed below. If the collide_modify vibration command is used with a setting of
discrete, then this vibrational mode info must be specified for each
species with a vibdof = 4,6,8. Note that the fix vibmode command must also be used to allocate
per-particle storage for these additional modes.

The optional vibfile keyword can be used to specify additional
vibrational information in the specified vfile. If this option is
used, then an entry must appear in vfile for every species in this
command with a vibdof value = 4,6,8. Note that even if this vibrational
info is read, it is ignored by SPARTA unless the collide_modify vibrate setting is specified as discrete.

The format of a species vibrational file is as follows. See
data/co2.species.vib for an example. Comments or blank lines are allowed
in the file. Comment lines start with a “#” character. All other lines
must have the following format with values separated by whitespace:

species-ID N temp1 relax1 degen1 temp2 relax2 degen2 ... tempN relaxN degenN

The species-ID is a string that will be matched against the requested
species-ID, as described above. N is the number of vibrational modes
that follow, which must be either 2,3,4, and must match the
corresponding vibdof value = 4,6,8 (divided by two) used in the species
file.

For each of the N modes, 3 values are listed:

	tempI = vibrational temperature of mode I (temperature units)

	relaxI = inverse vibrational relaxation number of mode I (unitless)

	degenI = degeneracy of mode I (integer, unitless)

These quantities are used during collisions if vibrational energy is
modeled in discrete levels.

Note that the values for temp1 and relax1 override the same values
defined in the species file (prop7 and prop6) when they are listed for
the same species in the vibfile.

Restrictions:

none

Related commands:

none

Default:

none

stats command

Syntax:

stats N

	N = output statistics every N timesteps

Examples:

stats 100

Description:

Compute and print statistical info (e.g. particle count, temperature) on
timesteps that are a multiple of N and at the beginning and end of a
simulation run. A value of 0 will only print statistics at the beginning
and end.

The content and format of what is printed is controlled by the
stats_style and
stats_modify commands.

The timesteps on which statistical output is written can also be
controlled by a variable. See the stats_modify every command.

Restrictions:

none

Related commands:

stats_style command,
stats_modify command

Default:

stats 0

stats_modify command

Syntax:

stats_modify keyword value ...

	one or more keyword/value pairs may be listed

	keyword = flush or format or every

flush value = yes or no
format values = line string, int string, float string, M string, or none
 string = C-style format string
 M = integer from 1 to N, where N = # of quantities being output
every value = v_name
 v_name = an equal-style variable name

Examples:

stats_modify flush yes
stats_modify format 3 %15.8g
stas_modify format line "%ld %g %g %15.8g"

Description:

Set options for how statistical information is computed and printed by
SPARTA.

The flush keyword invokes a flush operation after statistical info is
written to the log file. This insures the output in that file is current
(no buffering by the OS), even if SPARTA halts before the simulation
completes.

The format keyword can be used to change the default numeric format of
any of quantities the stats_style command
outputs. All the specified format strings are C-style formats, e.g. as
used by the C/C++ printf() command. The line keyword takes a single
argument which is the format string for the entire line of stats output,
with N fields, which you must enclose in quotes if it is more than one
field. The int and float keywords take a single format argument and
are applied to all integer or floating-point quantities output. The
setting for M string also takes a single format argument which is used
for the Mth value output in each line, e.g. the 5th column is output in
high precision for “format 5 %20.15g”.

The format keyword can be used multiple times. The precedence is that
for each value in a line of output, the M format (if specified) is
used, else the int or float setting (if specified) is used, else the
line setting (if specified) for that value is used, else the default
setting is used. A setting of none clears all previous settings,
reverting all values to their default format.

Note

The stats output values step and atoms are stored internally as 8-byte signed integers, rather than the usual 4-byte signed integers. When specifying the format int option you can use a “%d”-style format identifier in the format string and SPARTA will convert this to the corresponding 8-byte form when it is applied to those keywords. However, when specifying the line option or format M string option for step and natoms, you should specify a format string appropriate for an 8-byte signed integer, e.g. one with “%ld”.

The every keyword allows a variable to be specified which will
determine the timesteps on which statistical output is generated. It
must be an equal-style variable, and is specified as
v_name, where name is the variable name. The variable is evaluated at
the beginning of a run to determine the next timestep at which a dump
snapshot will be written out. On that timestep, the variable will be
evaluated again to determine the next timestep, etc. Thus the variable
should return timestep values. See the stagger() and logfreq() math
functions for equal-style variables, as examples of
useful functions to use in this context. Other similar math functions
could easily be added as options for equal-style variables. In addition, statistical output will
always occur on the first and last timestep of each run.

For example, the following commands will output statistical info at
timesteps 0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
stats_modify 1 every v_s

Note that the every keyword overrides the output frequency setting
made by the stats command, by setting it to 0. If the
stats command is later used to set the output frequency
to a non-zero value, then the variable setting of the stats_modify every
command will be overridden.

Restrictions:

none

Related commands:

stats command,
stats_style command

Default:

The option defaults are flush = no, format int = “%8d”, format float =
“%12.8g”, and every = non-variable setting provided by the
stats command.

stats_style command

Syntax:

stats_style arg1 arg2 ...

	arg1,arg2,… = list of keywords

possible keywords:

	step = timestep

	elapsed = timesteps since start of this run

	elaplong = timesteps since start of initial run in a series of runs

	dt = timestep size

	cpu = elapsed CPU time in seconds within a run

	tpcpu = time per CPU second

	spcpu = timesteps per CPU second

	wall = wallclock time in seconds

	np, npave = # of particles (this step, per-step)

	ntouch, ntouchave = # of cell touches by particles (this step, per-step)

	ncomm, ncommave = # of particles communicated (this step, per-step)

	nbound, nboundave = # of boundary collisions (this step, per-step)

	nexit, nexitave = # of boundary exits (this step, per-step)

	nscoll, nscollave = # of surface collisions (this step, per-step)

	nscheck, nscheckave = # of surface checks (this step, per-step)

	ncoll, ncollave = # of particle/particle collisions (this step, per-step)

	nattempt, nattemptave = # of attempted collisions (this step, per-step)

	nreact, nreactave = # of chemical reactions (this step, per-step)

	nsreact, nsreactave = # of chemical reactions on surfs and boundaries (this step, per-step)

	ngrid = # of grid cells (including split cells)

	nsplit = # of split cells

	maxlevel = max # of refinement levels in current grid

	vol = volume of simulation box

	lx,ly,lz = simulation box lengths

	xlo,xhi,ylo,yhi,zlo,zhi = box boundaries,

	s_ID[I] = Ith component of global vector calculated by a surface collision model with ID

	r_ID[I] = Ith component of global vector calculated by a surface reaction model with ID

	c_ID = global scalar value calculated by a compute with ID

	c_ID[I] = Ith component of global vector calculated by a compute with ID, I can include wildcard (see below)

	c_ID[I][J] = I,J component of global array calculated by a compute with ID

	f_ID = global scalar value calculated by a fix with ID

	f_ID[I] = Ith component of global vector calculated by a fix with ID, I can include wildcard (see below)

	f_ID[I][J] = I,J component of global array calculated by a fix with ID

	v_name = scalar value calculated by an equal-style variable with name

Examples:

stats_style step cpu np
stats_style step cpu spcpu np xlo xhi c_myCount[2]
stats_style step cpu spcpu np xlo xhi c_myCount[*]

Description:

Determine what statistical data is printed to the screen and log file.

The values printed by the various keywords are instantaneous values,
calculated on the current timestep. The exception is the keywords
suffixed by “ave”, which print a running total divided by the number of
timesteps.

Options invoked by the stats_modify command can
be used to set the numeric precision of each printed value, as well as
other attributes of the statistics.

	The step and elapsed keywords

	refer to timestep count. Step is the current timestep. Elapsed is the number of timesteps elapsed since the beginning of this run. Elaplong is the number of timesteps elapsed since the beginning of an initial run in a series of runs. See the start and stop keywords for the run command for info on how to invoke a series of runs that keep track of an initial starting time. If these keywords are not used, then elapsed and elaplong are the same value.

	The cpu keyword

	is elapsed CPU seconds since the beginning of this run. The tpcpu and spcpu keywords are measures of how fast your simulation is currently running. The tpcpu keyword is simulation time per CPU second, where simulation time is in time units. The spcpu keyword is the number of timesteps per CPU second. Both quantities are on-the-fly metrics, measured relative to the last time they were invoked. Thus if you are printing out statistical output every 100 timesteps, the two keywords will continually output the time and timestep rate for the last 100 steps.

	The wall keyword

	is elapsed time in seconds since SPARTA was launched. This can be used to time portions of the input script in the following manner:

variable t equal wall
variable t1 equal $t
portion of input script
variable t2 equal $t
variable delta equal v_2-v_1
print "Delta time = $delta"

The np, ntouch, ncomm, nbound, nexit, nscoll, nscheck,
ncoll, nattempt, nreact, and nsreact keywords all generate
counts for the current timestep.

The npave, ntouchave, ncommave, nboundave, nexitave,
nscollave, nscheckave, ncollave, nattemptave, nreactave, and
nsreactave keywords all generate values that are the cummulative total
of the corresponding count divided by elapsed = the number of
timesteps since the start of the current run.

	The np keyword

	is the number of particles.

	The ntouch keyword

	is the number of cells touched by the particles during the move portion of the timestep. E.g. if a particle moves from cell A to adjacent cell B, it touches 2 cells.

	The ncomm keyword

	is the number of particles communicated to other processors.

	The nbound keyword

	is the number of particles that collided with a global boundary. Crossing a periodic boundary or exiting an outflow boundary is not counted.

	The nexit keyword

	is the number of particles that exited the simulation box through an outflow boundary.

	The nscoll keyword

	is the number of particle/surface collisions that occurred, where a particle collided with a geometric surface.

	The nscheck keyword

	is the number of particle/surface collisions that were checked for. If a cell is overlapped by N surface elements, all N must be checked for collisions each time a particle in that cell moves.

	The ncoll keyword

	is the number of particle/particle collisions that occurred.

	The nattempt keyword

	is the number of particle/particle collisions that were attempted.

	The nreact keyword

	is the number of chemical reactions that occurred.

	The nsreact keyword

	is the number of chemical reactions on surfaces that occurred, including the global boundaries if they are treated as reacting surfaces, via the bound_modify command.

	The ngrid keyword

	is the number of grid cells which includes both unsplit and split cells. The nsplit keyword is the number of split cells. See Section howto 4.8 for a description of the hierarchical grid used by SPARTA and a definition of these kinds of grid cells.

	The maxlevel keyword

	is the # of levels of grid refinement currently used in the simulation. This may change due to dynamic grid adaptation.

	The vol keyword

	is the volume (or area in 2d) of the simulation box.

	The lx, ly, lz keywords

	are the dimensions of the simulation box.

	The xlo, xhi, ylo, yhi, zlo, zhi keywords

	are the boundaries of the simulation box.

For output values from a compute or fix, the bracketed index I used to
index a vector, as in c_ID[I] or f_ID[I], can be specified using a
wildcard asterisk with the index to effectively specify multiple values.
This takes the form “*” or “n” or “n” or “m*n”. If N = the size of the
vector (for mode = scalar) or the number of columns in the array (for
mode = vector), then an asterisk with no numeric values means all
indices from 1 to N. A leading asterisk means all indices from 1 to n
(inclusive). A trailing asterisk means all indices from n to N
(inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual elements of the vector
had been listed one by one. E.g. these 2 stats_style commands are
equivalent, since the compute reduce command
creates a global vector with 6 values.

compute myCount reduce max x y z vx vy vz
stats_style step np c_myCount[*]
stats_style step np c_myCount[1] c_myCount[2] c_myCount[3] &
 c_myCount[4] c_myCount[5] c_myCount[6]

For the following keywords, the ID in the keyword should be replaced by
the actual ID of a surface collision model, surface reaction model,
compute, fix, or variable name that has been defined elsewhere in the
input script. See those commands for details. If the entity calculates a
global scalar, vector, or array, then the keyword formats with 0, 1, or
2 brackets will reference a scalar value from the entity.

	The s_ID[I] and r_ID[I] keywords

	allow global values calculated by a surface collision model or surface reaction model to be output. As discussed on the surf_collide and surf_react doc pages, these models both calculate a global vector of quantities.

	The c_ID and c_ID[I] and c_ID[I][J] keywords

	allow global values calculated by a compute to be output. As discussed on the compute doc page, computes can calculate global, per-particle, per-grid, or per-surf values. Only global values can be referenced by this command. However, per-particle, per-grid, or per-surf compute values can be referenced in a variable and the variable referenced, as discussed below. See the discussion above for how the I in c_ID[I] can be specified with a wildcard asterisk to effectively specify multiple values from a global compute vector.

	The f_ID and f_ID[I] and f_ID[I][J] keywords

	allow global values calculated by a fix to be output. As discussed on the fix doc page, fixes can calculate global, per-particle, per-grid, or per-surf values. Only global values can be referenced by this command. However, per-particle or per-grid or per-surf fix values can be referenced in a variable and the variable referenced, as discussed below. See the discussion above for how the I in f_ID[I] can be specified with a wildcard asterisk to effectively specify multiple values from a global fix vector.

	The v_name keyword

	allow the current value of a variable to be output. The name in the keyword should be replaced by the variable name that has been defined elsewhere in the input script. Only equal-style variables can be referenced. See the variable command for details. Variables of style equal can reference per-particle or per-grid or per-surf properties or stats keywords, or they can invoke other computes, fixes, or variables when evaluated, so this is a very general means of creating statistical output.

See Section_modify for information on how to add new compute and fix styles to SPARTA to calculate quantities that can then be referenced with these keywords to generate statistical output.

Restrictions:

none

Related commands:

stats command
stats_modify command

Default:

stats_style step cpu np

suffix command

Syntax:

suffix style args

	style = off or on or kk

Examples:

suffix off
suffix on
suffix kk

Description:

This command allows you to use variants of various styles if they exist.
In that respect it operates the same as the -suffix command-line switch. It also has options to turn off
or back on any suffix setting made via the command line.

The specified style kk refers to the optional KOKKOS package that
SPARTA can be built with, as described in this section of the manual. The KOKKOS package is a
collection of styles optimized to run using the Kokkos library on
various kinds of hardware, including GPUs via CUDA and many-core chips
via OpenMP multi-threading.

As an example, the KOKKOS package provides a compute_style temp variant, with style name temp/kk. A variant
style can be specified explicitly in your input script, e.g. compute
temp/kk. If the suffix command is used with the appropriate style, you
do not need to modify your input script. The specified suffix (kk) is
automatically appended whenever your input script command creates a new
fix, compute, etc. If the variant
version does not exist, the standard version is created.

If the specified style is off, then any previously specified suffix is
temporarily disabled, whether it was specified by a command-line switch
or a previous suffix command. If the specified style is on, a disabled
suffix is turned back on. The use of these 2 commands lets your input
script use a standard SPARTA style (i.e. a non-accelerated variant),
which can be useful for testing or benchmarking purposes. Of course this
is also possible by not using any suffix commands, and explicitly
appending or not appending the suffix to the relevant commands in your
input script.

Restrictions:

none

Related commands:

Command-line switch -suffix

Default:

none

surf_collide command

Syntax:

surf_collide ID style args keyword values ...

	ID = user-assigned name for the surface collision model

	style = specular or diffuse or cll or impulsive or td or
piston or transparent or vanish or specular/kk or
diffuse/kk or piston/kk or vanish/kk

	args = arguments for specific style

	specular or specular/kk

	args = none

	diffuse or diffuse/kk args = Tsurf acc

	
	Tsurf = temperature of surface (temperature units).
Tsurf can be a variable (see below)

	acc = accommodation coefficient

	td args = Tsurf acc_n acc_t acc_rot acc_vib

	
	Tsurf = temperature of surface (temperature units).
Tsurf can be a variable (see below)

	acc_n = accommodation coefficient in the surface normal direction

	acc_t = accommodation coefficient in the surface tangential direction

	acc_rot = accommodation coefficient for the rotational modes

	acc_vib = accommodation coefficient for the vibrational modes

	td args = Tsurf model param1 param2 var theta_peak pol_pow azi_pow

	
	Tsurf = temperature of surface (temperature units).
Tsurf can be a variable (see below)

	model can be softsphere or tempvar

	softsphere args = en_ratio eff_mass

	param1 = en_ratio = fraction of energy lost in the collision

	param2 = eff_mass = effective mass of the surface atom

	tempvar args = a1 a0

	param1 = a1 = linear term in the variation with temperature

	param2 = a0 = constant term in the variation with temperature

	var = variance of the scattered particle velocity distribution

	theta_peak = peak location of the polar angle distribution

	pol_pow = cosine power represeting the polar angular distribution

	azi_pow = cosine power represeting the azimuthal angular distribution

	td arg = Tsurf

	Tsurf = temperature of surface (temperature units).
Tsurf can be a variable (see below)

	piston or piston/kk args = Vwall

	Vwall = velocity of boundary wall (velocity units)

	transparent

	args = none

	vanish or vanish/kk

	args = none

	zero or more keyword/arg pairs may be appended

keyword = translate or rotate or partial

values = values for specific keyword

	translate args = Vx Vy Vz

	Vx,Vy,Vz = translational velocity of surface (velocity units)

	rotate args = Pz Py Pz Wx Wy Wz

	Px,Py,Pz = point to rotate surface around (distance units)

	Wx,Wy,Wz = angular velocity of surface around point (radians/time)

	partial args = eccen (only for cll style)

	eccen = eccentricity parameter

	barrier args = bar_val (only for td style)

	bar_val = value of the desorption barrier in temperature units

	bond args = bond_trans bond_rot bond_vib (only for td style)

	bond_trans = amount of bond dissociation energy (in temperature units) going into translational mode

	bond_rot = amount of bond dissociation energy (in temperature units) going into rotational mode

	bond_vib = amount of bond dissociation energy (in temperature units) going into vibrational mode

	init_energy = IE_trans IE_rot IE_vib (only for td style)

	IE_trans = fraction of initial translational energy going into translational mode

	IE_rot = fraction of initial translational energy going into rotational mode

	IE_vib = fraction of initial translational energy going into vibrational mode

	step args = epsilon (only for impulsive style)

	epsilon = ratio of the height to the width of the step

	double args = polar_pow_2 (only for impulsive style)

	polar_pow_2 = cosine power for the polar angular distribution between peak and surface

	intenergy args = frac_rot frac_vib (only for impulsive style)

	frac_rot = fraction of lost translational energy going into the rotational mode

	frac_vib = fraction of lost translational energy going into the vibrational mode

Examples:

surf_collide 1 specular
surf_collide 1 transparent
surf_collide 1 diffuse 273.15 0.9
surf_collide 1 cll 273.15 0.8 0.8 0.5 0.1
surf_collide 1 cll 273.15 1.0 1.0 0.1 0.1 partial 0.5
surf_collide 1 impulsive 1000.0 softsphere 0.2 50 2000 60 5 75
surf_collide 1 impulsive 1000.0 tempvar 3 500 2000 60 5 75
surf_collide 1 impulsive 1000.0 softsphere 0.2 50 2000 60 5 75 double 10
surf_collide 1 impulsive 1000.0 tempvar 3 500 2000 60 5 75 step 0.1
surf_collide heatwall diffuse v_ramp 0.8
surf_collide heatwall diffuse v_ramp 0.8 translate 5.0 0.0 0.0

Description:

Define a model for particle-surface collisions. One or more models can
be defined and assigned to different surfaces or simulation box
boundaries via the surf_modify command or
bound_modify command. See Details of surfaces in SPARTA for more
details of how SPARTA defines surfaces as collections of geometric
elements, triangles in 3d and line segments in 2d. Chemical reactions
can also be part of a particle-surface interaction model. See the
surf_react command for details. All of the collision styles listed
here support optional reactions, except the vanish style.

The ID for a surface collision model is used to identify it in other
commands. Each surface collision model ID must be unique. The ID can
only contain alphanumeric characters and underscores.

The specular style computes a simple specular reflection model. It
requires no arguments. Specular reflection means that a particle
reflects off a surface element with its incident velocity vector
reversed with respect to the outward normal of the surface element. The
particle’s speed is unchanged.

The diffuse style computes a simple diffusive reflection model.

The model has 2 parameters set by the Tsurf and acc arguments.
Tsurf is the temperature of the surface. Acc is an accommodation
coefficient from 0.0 to 1.0, which determines what fraction of surface
collisions are diffusive. The rest are specular. Thus a setting of acc
= 0.0 means all collisions are specular and a setting of acc
= 1.0 means all collisions are diffusive.

Note that setting acc = 0.0, is a way to perform surface reactions
with specular reflection, via the surf_react command, which
cannot be done in conjunction with the surf_collide specular
command. See the surf_react command doc page for details.

Diffuse reflection emits the particle from the surface with no
dependence on its incident velocity. A new velocity is assigned to the
particle, sampled from a Gaussian distribution consistent with the
surface temperature. The new velocity will have thermal components in
the direction of the outward surface normal and the plane tangent to the
surface given by:

\[u = \{-ln(R_f)\}^{1/2}/\beta\]

The Tsurf value can be specified as an equal-style variable. If the value is a variable, it should be specified as v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its value used to determine the current surface temperature.

Equal-style variables can specify formulas with various mathematical functions, and include stats_style command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a time-dependent temperature.

The cll style computes the surface collision model proposed by
Cercignani, Lampis and Lord. The model has 5 parameters set by the
Tsurf, acc_n, acc_t, acc_rot, and acc_vib arguments. Tsurf
is the temperature of the surface. acc_n, acc_t, acc_rot, and
acc_vib are the accommodation coefficient for the surface normal
direction, surface tangential directions, rotational energy mode, and
vibrational energy mode respectively. The rotational and vibrational
energy accommodation values must be specified even for an atomic
species; however these values are simply ignored.

The theoretical scattering kernel was proposed by Cercignani and Lampis
[Cercignani71]. In this original model, two
accommodation coefficients for the normal and tangential directions are
employed. Each of these quantities can take a value between 0 and 1.
Specular reflection is achieved by using the values (0,0), while
complete thermal accommodation with the surface and cosine angular
distributions is obtained using (1,1). There is smooth variation of both
the energy and angular distribution for values in between these limits
leading to lobular distributions similar to those observed in
experiments. The implementation details of this model within DSMC was
given by Lord [Lord90], along with extension to rotational
and vibrational modes with both continuous and discrete levels
[Lord91].

The Tsurf value can be specified as an equal-style variable. If the value is a variable, it should be specified as v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its value used to determine the current surface temperature.

Equal-style variables can specify formulas with various mathematical
functions and include stats_style command
keywords for the simulation box parameters and timestep and elapsed
time. Thus, it is easy to specify a time-dependent temperature.

The td style computes the thermal desorption surface collision model
proposed by Swaminathan Gopalan et al. [SG18]. The model has 1
parameter set by Tsurf argument, which is the temperature of the
surface. This is similar to diffuse style with an accommodation
coefficient acc = 1.0.

The particles are scattered thermally based on the Maxwell Boltzmann
distribution conisstent with the surface temperture. The new velocity
will have thermal components in the direction of the outward surface
normal and the plane tangent to the surface given by:

\[u = \{-ln(R_f)\}^{1/2}/\beta\]

The Tsurf value can be specified as an equal-style
variable. If the value is a variable, it should be
specified as v_name, where name is the variable name. In this case, the
variable will be evaluated each timestep, and its value used to
determine the current surface temperature.

Equal-style variables can specify formulas with various mathematical functions, and include stats_style command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a time-dependent temperature.

The impulsive style computes the surface collision model proposed by Swaminathan Gopalan et al. [SG18]. The model has 8 parameters.
Within impulsive scattering, two different models are available, namely softsphere and tempvar. The softsphere argument uses the soft sphere model and has two parameters: en_ratio which represents the fraction of energy lost during the collision, and eff_mass specifying the effective mass of the surface atom.
The tempvar argument directly provides the peak value of the scattered particle velocity distribution as a linear function of temperature. It has two parameters: the linear term a1 and constant term a0.
The other five parameters Tsurf, var, pol_peak, pol_pow, azi_pow are set for both the models. Tsurf is the surface temperature. var is the variance of the scattered particle velocity distribution. pol_peak is the peak of the polar angle distribution. pol_pow and azi_pow are the cosine power representing the polar and azimuthal angle distribution respectively.

The impulsive model is used to represent the scattering of particles having super or hyperthermal translational energies and very low internal energies, like in a beam. This type of scattering falls under the structural regime, whose scattering physics and distributions are very different from the thermal regime. The velocity distribution of the impulsive scattering model can be represented using a Gaussian distribution with a mean \(u_{0}\) and a variance \(\alpha\) following Rettner [Rettner94a]

\[f_\text{impulsive}(u) \propto u^{2} \, \exp\left(-\frac{(u-u_0)^{2}}{2\alpha^2}\right)\]

The variance parameter is directly specified by the user. The value of \(u_{0}\) can be provided directly using the tempvar model in which it is represented as a linear function of temperature. The linear term a1 and constant term a0 are given as inputs.

\[\left\langle E_{f} \right\rangle = E_{i} \left(1 - \frac{2\mu}{\left(\mu+1\right)^{2}}\left[1 + \mu \sin^{2}\chi + \frac{E_\text{int}}{E_{i}}\left(\frac{\mu+1}{2\mu}\right) - \cos{\chi}\sqrt{1 - \mu^{2} \sin^{2}\chi - \frac{E_\text{int}}{E_{i}}\left(\mu+1\right)}\right]\right)\]

The \(u_{0}\) parameter can also be specified by a more physical model such as the soft sphere scattering model [Alexander12]. This model uses the parameters en_ratio, the fraction of energy lost in the collision and eff_mass, the effective mass of the surface atom to determine the average final energy and then the average final velocity u0. Within the soft sphere model, the average final velocity will vary as a function of the final polar angle.

\[u_{0} = a_{1} \cdot T + a_{0}\]

Both the polar and azimuthal angular distribution are lobular in nature and sharply peaked. These distributions can be represented using the cosine power law distribution [Glatzer97].
The peak of the azimuthal distribution remains at zero, while the peak of the polar angle distribution is usually higher than the incident angle (away from the normal). Hence the peak location (theta_peak) and cosine power (n) of the polar angle distribution and the cosine power (m) of the azimuthal angular distribution are taken as input parameters.
A factor of 2 is present in the azimuthal distribution to ensure the function remians positive within the range of the azimuthal angle: (-180, 180)

\[N(\theta) \propto \cos^{n} \left(\theta-\theta_{\text{peak}} \right)\]

\[N(\phi) \propto \cos^{m} \left(\frac{\phi}{2}\right)\]

The internal (rotational and vibrational) energy of an incident molecule remains unchanged within the impulsive model unless the optional keyword intenergy is specified (see below).

The Tsurf value can be specified as an equal-style variable. If the value is a variable, it should be specified as v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its value used to determine the current surface temperature.

Equal-style variables can specify formulas with various mathematical functions and include stats_style command keywords for the simulation box parameters and timestep and elapsed time. Thus, it is easy to specify a time-dependent temperature.

The piston style models a subsonic pressure boundary condition. It can only be assigned to the simulation box boundaries via the bound_modify command or to surface elements which are parallel to one of the box boundaries (via the surf_modify command).

It treats collisions of particles with the surface as if the surface were moving with specified velocity Vwall away from the incident particle. Thus the “collision” actually occurs later in the timestep and the reflected velocity is less than it would be for reflection from a stationary surface.
This calculation is performed using equations 12.30 and 12.31 in [Bird94] to compute the reflected velocity and final position of the particle. If the particle does not return within the timestep to a position inside the simulation box (for a boundary surface) or to the same side of the initial surface that it started from (for a surface element collision), the particle is deleted. This effectively induces particles at the boundary to have a velocity distribution consistent with a subsonic pressure boundary condition, as explained in [Bird94].

Vwall should be chosen to correspond to a desired pressure condition for the density of particles in the system.

NOTE: give more details on how to do this?

Note

Vwall must always be input as a value >= 0.0, meaning the surface is moving away from the incident particle. For example, in the z-dimension, if the upper box face is assigned Vwall, it is moving upward. Similarly if the lower box face is assigned Vwall, it is moving downward.

The transparent style simply allows particles to pass through the surface without altering the particle properties.

This is useful for tallying flow statistics. The surface elements must have been flagged as transparent when they were read in, via the read_surf command and its transparent keyword. The compute surf command will tally fluxes differently for transparent surf elements. The Transparent surface elements doc page provides an overview of transparent surfaces. See those doc pages for details.

The vanish style simply deletes any particle which hits the surface.

This is useful if a surface is defined to be an inflow boundary on the simulation domain, e.g. using the fix emit/surf command. Using this surface collision model will also treat the surface as an outflow boundary. This is similar to using the fix emit/face command on a simulation box face while also setting the face to be an outflow boundary via the boundary o command.

Note that the surf_react global command
can also be used to delete particles hitting a surface, by setting the
pdelete parameter to 1.0. Using a surf_collide vanish command is
simpler.

The keyword translate can only be applied to the diffuse and cll
style. It models the surface as if it were translating with a constant
velocity, specified by the vector (Vx,Vy,Vz). This velocity is added
to the final post-collisional velocity of each particle that collides
with the surface.

The keyword rotate can only be applied to the diffuse and cll
style. It models the surface as if it were rotating with a constant
angular velocity, specified by the vector W = (Wx,Wy,Wz), around the
specified point P = (Px,Py,Pz). Note that W and P define the rotation
axis. The magnitude of W defines the speed of rotation. I.e. if the
length of W = 2*pi then the surface is rotating at one revolution per
time unit, where time units are defined by the units command.

When a particle collides with the surface at a point X = (x,y,z), the
collision point has a velocity given by V = (Vx,Vy,Vz) = W cross
(X-P). This velocity is added to the final post-collisional velocity
of the particle.

The rotate keyword can be used to treat a simulation box boundary as
a rotating wall, e.g. the end cap of an axisymmetric cylinder. Or to
model a rotating object consisting of surface elements, e.g. a
sphere. In either case, the wall or surface elements themselves do not
change position due to rotation. They are simply modeled as having a
tangential velocity, as if the entire object were rotating.

Important

For both the translate and rotate keywords the added velocity can only be tangential to the surface, with no normal component since the surface is not actually moving in the normal direction.
SPARTA does not check that the specified translation or rotation produces a tangential velocity.
However if does enforce the condition by subtracting off any component of the added velocity that is normal to the simulation box boundary or individual surface element.

The keyword partial can only be applied to the cll style. Within the
CLL model, the energy and angular distribution are linked. Lord
[Lord95] proposed a way to decouple the energy
accommodation from the angular distribution. This case of partially
diffuse scattering with incomplete energy accommodation can be activated
in SPARTA using the optional keyword partial. It requires an
additional parameter eccentricity set by the eccen argument. For this
case, the energy accommodation is calculated using the accommodation
coefficients, but the angular distribution is computed using the
additional parameter eccentricity. The eccen parameter can vary
between 0 and 1. A value of 0 represents fully diffuse scattering and
gives a cosine angular distribution. Increasing value of eccen
presents more peaked and lobular distribution [Lord95].

The keywords barrier, bond, and initenergy can only be applied to the td style. Due to the nature of the interaction between the products and the surface, the desorption of the products might have an energy barrier. For a surface desorption process, this desorption barrier exists only in the normal direction. Thus, only the products having enough energy (in the normal direction) to overcome the barrier will be able to desorb from the surface. This alters the velocity distribution of the observed products along the surface normal direction and thus leads to the distortion of the speed distribution [Goodman72]. The angular distributions, which represent the ratio of the normal to the tangential velocities, are also altered as a result of the desorption barrier.
The angular distributions are peaked more towards the normal and are often described by a cosine power law distribution.

\[T_\text{norm} = T_\text{surf}\left(1 + \frac{E_\text{barrier}}{k_{b}}\right).\]

\[f(v) \propto v^{2} \exp\left(-\frac{mv^{2}}{2k_{b}}\left(\frac{\cos^{2}\theta}{T_\text{norm}} + \frac{\sin^{2}\theta}{T_{\text{surf}}}\right)\right)\]

In addition to the desorption energy barrier, products formed through thermal mechanisms might have energies exceeding those corresponding to the bulk surface temperature. The energy of the local surface environment where the product formation occurs might be greater than the normal surface temperature due to the formation of local hot-spots [Rettner94b].

These hot-spots might stem from the dissociation or bond energy of the intermediates or the products. The optional keyword bond can be used to account for this scenario. This requires three arguments: the amount of energy (in temperature units) going into the translational, rotational and vibrational mode.

\[E_{prod} = k_{b}T_{s} + k_{b}\sigma_2\]

The higher energy during desorption might also arise due to the energy deposited by high speed of the incoming gas-phase particles. Since the formation of the products is rapid, the product might form and desorb before this high energy dissipates from the local hot-spots [Beckerle90]. In this case, although the products are in thermal equilibrium with the surroundings, the energies of the products might not depend only on the equilibrium surface temperature, but also on the incoming velocities of the particles. This can be used within SPARTA using the optional keyword initenergy. It requires 3 arguments: fraction of the initial translational energy going into the translational, rotational and vibrational modes.

\[E_{prod} = k_{b}T_{s} + \sigma_1 E_{in}\]

The keywords step, double, and intenergy can only be applied to the impulsive style. In some cases, it is observed that the polar angular distribution on either side of the peak is different. Goodman [Goodman74] provided a physical reasoning for the observed faster decay rate in the polar angular distribution away from the normal with the surface assumed to consist of periodic steps of average height H and average periodicity L. The ratio of the height to periodicity is epsilon and the correction to the angular distribution is given by

\[\begin{split}f_{corr} = \begin{cases}
1 - \epsilon \, \tan(\theta_{0}), & \text{if } \tan(\theta_{0}) < \epsilon^{-1} \\
0, & \text{otherwise}
\end{cases}\end{split}\]

This optional argument can be accessed using the keyword step, and epsilon parameter must be specified. Another optional argument to specify the angular distribution of the products is the double keyword. In this option, the angular distribution on either sides of the peak are represented by a different cosine power decay. It requires one argument pol_pow_2, which describes the distribution between the peak and the surface. The distribution between the surface normal and the peak is described using the parameter pol_pow.

The keyword intenergy can be used to modify the internal energy of an incident molecule during collision. In the case of hyperthermal collision the energy from the translational mode is transfered to the internal modes. This keyword requires two input parameters frac_rot and frac_vib. These specify the fraction of the change in translational energy (difference between the final and initial) transferred to the rotational and vibrational mode respectively.

Output info:

All the surface collide models calculate a global vector of length 2. The values can be used by the stats_style command and by variable command that define formulas. The latter means they can be used by any command that uses a variable as input, e.g. the fix ave/time command. See Output from SPARTA (stats, dumps, computes, fixes, variables) for an overview of SPARTA output options.

The first element of the vector is the count of particles that hit surface elements assigned to this collision model during the current timestep. The second element is the cummulative count of particles that have hit surface elements since the current run began.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section of the manual. The accelerated styles take the same arguments and should produce the same results, except for different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the -suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

The translate and rotate keywords cannot be used together.

If specified with a kk suffix, this command can be used no more than twice in the same input script (active at the same time).

Related commands:

read_surf command,
bound_modify command

Default:

none

References:

	Bird94(1,2)

	
	
	Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford (1994).

	Cercignani71

	Cercignani C, Lampis M, Kinetic models for gas-surface interactions, Transport theory and statistical physics, Jan (1971).

	Lord90

	
	
	Lord, presented at the 17th International Symposium on Rarefied Gas Dynamics, Germany, July (1990).

	Lord91

	
	
	Lord, Some extensions of the Cercignani-Lampis gas-surface interaction model, Physics of Fluids A: Fluid Dynamics, Jan (1991).

	SG18(1,2)

	
	Swaminathan Gopalan, Development of a detailed surface chemistry framework in DSMC, AIAA Aerospace Sciences Meeting, Jan (2018).

	Rettner94a

	
	
	Rettner, Reaction of an H-atom beam with Cl/Au(111): Dynamics of concurrent EleyRideal and Langmuir-Hinshelwood mechanisms, Journal of Chemical Physics, (1994).

	Alexander12

	
	
	Alexander, et al, Kinematics and dynamics of atomic-beam scattering on liquid and self-assembled monolayer surfaces, Faraday discussions, (2012)

	Glatzer97

	
	Glatzer, et al, Rotationally excited NO molecules incident on a graphite surface: in- and out-of-plane angular distributions, Surface Science, (1997)

	Lord95(1,2)

	
	
	Lord, Some further extensions of the Cercignani-Lampis gas-surface interaction model, Physics of Fluids, May (1995).

	Goodman72

	
	
	Goodman, Simple model for the velocity distribution of molecules desorbed from surfaces following recombination of atoms, Surface Science, (1972).

	Rettner94b

	
	
	Rettner and J. Lee, Dynamic displacement of o2 from pt (111): A new desorption mechanism, The Journal of chemical physics, (1994).

	Beckerle90

	
	Beckerle, A. Johnson, and S. Ceyer, Collision-induced desorption of physisorbed CH4 from Ni (111): Experiments and simulations, The Journal of Chemical Physics, (1990).

	Goodman74

	
	
	Goodman, Determination of characteristic surface vibration temperatures by molecular beam scattering: Application to specular scattering in the H-LiF (001) system, Surface Science, (1974)

surf_modify command

Syntax:

surf_modify group-ID keyword args ...

group-ID = ID of the surface group to operate on

	one or more keyword/arg pairs may be listed

	keyword = collide or (react)

	collide arg = sc-ID

	sc-ID = ID of a surface collision model

	react arg = sr-ID

	sr-ID = ID of a surface reaction model or none

Examples:

surf_modify sphere collide 1
surf_modify all collide sphere react sphere

Description:

Set parameters for a group of surface elements in the specified group-ID. Surface elements are read in by the read_surf command. They can be assigned to groups by that command or via the group command.

	The collide keyword

	is used to assign a surface collision model. Surface collision models are defined by the surf_collide command, which assigns each a surface collision ID, specified here as sc-ID.

The effect of this keyword is that particle collisions with surface elements in group-ID will be computed by the surface collision model with sc-ID.

	The react keyword

	is used to assign a surface reaction model. Surface reaction models are defined by the surf_react command, which assigns each a surface reaction ID, specified here as sr-ID or the word “none”. The latter means no reaction model.

	The effect of this keyword

	is that particle collisions with surface elements in group-ID will induce reactions which are computed by the surface reaction model with sr-ID. If “none” is used, no surface reactions occur.

Note

If the same surface element is assigned to multiple groups, using this command multiple times may override the effect of a previous command that assigned a different collision or reaction model to a particular surface element.

Restrictions:

All surface elements must be assigned to a surface collision model via
the collide keyword before a simlulation can be performed. Using a
surface reaction model is optional.

This command cannot be used before surfaces exist.

Related commands:

read_surf command,
bound_modify command

Default:

The default for surface reactions is none.

surf_react command

Syntax:

surf_react ID style args

	ID = user-assigned name for the surface reaction model

	style = global or prob

	args = arguments for that style

global args = pdelete pcreate
 pdelete = probability that surface collision removes the incident particle
 pcreate = probability that surface collision clones the incident particle
prob args = infile
 infile = file with list of surface chemistry reactions

Examples:

surf_react 1 global 0.2 0.15
surf_react 1 prob air.surf

Description:

Define a model for surface chemistry reactions to perform when particles
collide with surface elements or the global boundaries of the simulation
box. One or more models can be defined and assigned to different
surfaces or simulation box boundaries via the
surf_modify or
bound_modify commands. See Section 6.9 for more details of how SPARTA
defines surfaces as collections of geometric elements, triangles in 3d
and line segments in 2d. Also see the react command for
specification of a gas-phase chemistry reaction model.

The ID for a surface reaction model is used to identify it in other
commands. Each surface reaction model ID must be unique. The ID can only
contain alphanumeric characters and underscores.

The surface reaction models for the various styles are described below.
When a a particle collides with a surface element or boundary. the list
of all reactions possible with that species as the reactant is looped
over. A probability for each reaction is calculated, using the formulas
discussed below, and a random number is used to decide which reaction
(if any) takes place. A check is made that the sum of probabilities for
all possible reactions is <= 1.0, which should normally be the case if
reasonable reaction coefficients are defined.

Important

A surface reaction model can not be specified for surfaces whose surface collision style does not support reactions. Currently this is only the vanish collision style. See the surf_collide doc page for details.

The global style is a simple model that can be used to test whether
surface reactions are occurring as expected. There is no list of
reactions for different species; all species are treated the same. This
style thus defines two universal reactions, the first for particle
deletion, the second for particle creation.

The global style takes two parameters, pdelete and pcreate. The
first is the probability that a “deletion” reaction takes place when a
collision occurs. If it does, the particle is deleted. The second is the
probablity that a “creation” reaction occurs, which clones the particle,
so that one particle becomes two. The two particles leave the surface
according to whatever surface collision model is defined by the
surf_collide command, and is assigned to that
surface/boundary by the surf_modify collide
command.

The sum of pdelete and pcreate must be <= 1.0.

Note that if you simply wish to delete all particles which hit the
surface, you can use the surf_collide vanish
command, which is simpler.

For the prob style, a file is specified which contains a list of
surface chemical reactions, with their associated parameters. The
reactions are read into SPARTA and stored in a list. Each time a
simulation is run via the run command, the list is
scanned. Only reactions for which all the reactants and all the products
are currently defined as species-IDs will be active for the simulation.
Thus the file can contain more reactions than are used in a particular
simulation. See the species command for how species
IDs are defined. This style thus defines N reactions, where N is the
number of reactions listed in the specified file.

As explained below each reaction has a specified probability between 0.0
and 1.0. That probability is used to choose which reaction (if any) is
performed.

The format of the input surface reaction file is as follows. Comments or
blank lines are allowed in the file. Comment lines start with a “#”
character. All other entries must come in 2-line pairs with values
separated by whitespace in the following format

R1 --> P1 + P2
type style C1 C2 ...

The first line is a text-based description of a single reaction. R1 is a
single reactant for the particle that collides with the
surface/boundary, listed as a species IDs. P1 and P2
are one or two products, also listed as species IDs.
The number of reactants is always 1. The number of allowed products
depends on the reaction type, as discussed below. Individual reactants
and products must be separated by whitespace and a “+” sign. The
left-hand and right-hand sides of the equation must be separated by
whitespace and “–>”.

The type of each reaction is a single character (upper or lower case)
with the following meaning. The type determines how many reactants and
products can be specified in the first line.

D = dissociation = 1 reactant and 2 products
E = exchange = 1 reactant and 1 product
R = recombination = 1 reactant and 1 product named NULL

A dissociation reaction means that R1 dissociates into P1 and P2 when it
collides with the surface/boundary. There is no restriction on the
species involved in the reaction.

An exchange reaction is a collision where R1 becomes a new product P1.
There is no restriction on the species involved in the reaction.

A recombination reaction is a collision where R1 is absorbed by the
surface, so that the particle disappears. There are no products which is
indicated in the file by listing a single product as NULL. There is no
restriction on the species involved in the reaction.

The style of each reaction is a single character (upper or lower case)
with the following meaning:

	S = Surface

The style determines how many reaction coefficients are listed as C1,
C2, etc, and how they are interpreted by SPARTA.

For S = Surface style, there is a single coefficient:

	C1 = probability that the reaction occurs (0.0 to 1.0)

If the ambipolar approximation is being used, via the fix ambipolar command, then reactions which involve
either ambipolar ions or the ambipolar electron have more restricitve
rules about the ordering of reactants and products, than those described
in the preceeding section for the prob style.

The first is an “exchange” reaction which converts an ambipolar ion into
a neutral species. Internally this removes the ambipolar electron
associated with the ion. In the file of reactions this is done by having
the reactant be an ambipolar ion, and the product not be an ambipolar
ion.

The second is a “dissociation” reaction where a neutral species is
ionized by colliding with the surface/boundary, creating an ambipolar
ion and ambipolar electron. In the file of reactions this is done by
having the reactant not be an ambipolar ion, the first product be an
ambipolar ion, and the second product be an ambipolar electron. The two
products must be specified in this order.

Output info:

All the surface reaction models calculate a global vector of values. The
values can be used by the stats_style command and
by variables that define formulas. The latter means
they can be used by any command that uses a variable as input, e.g. “the
fix ave/time command. See Section 4.4 for an overview of SPARTA output
options.

The global and prob styles each compute a vector of length 2 +
2*nlist. For the global style, nlist = 2, for “delete” and “create”
reactions. For the prob style, nlist is the number of reactions listed
in the file is read as input.

The first element of the vector is the count of particles that performed
surface reactions for surface elements assigned to this reaction model
during the current timestep. The second element is the cummulative count
of particles that have performed reactions since the beginning of the
current run. The next nlist elements are the count of each individual
reaction that occurred during the current timestep. The final nlist
elements are the cummulative count of each individual reaction since the
beginning of the current run.

Restrictions:

none

Related commands:

react command
surf_modify command
bound_modify command

Default:

none

timestep command

Syntax:

timestep dt

	dt = timestep size (time units)

Examples:

timestep 2.0
timestep 0.003

Description:

Set the timestep size for subsequent simulations.

Restrictions:

none

Related commands:

run command

Default:

timestep 1.0

uncompute command

Syntax:

uncompute compute-ID

	compute-ID = ID of a previously defined compute

Examples:

uncompute 2
uncompute lower-boundary

Description:

Delete a compute that was previously defined with a compute command.

Restrictions:

none

Related commands:

compute command

Default:

none

undump command

Syntax:

undump dump-ID

	dump-ID = ID of previously defined dump

Examples:

undump mine
undump 2

Description:

Delete a dump that was previously defined with a dump command. This also closes the file associated with the dump.

Restrictions:

none

Related commands:

dump command

Default:

none

unfix command

Syntax:

unfix fix-ID

	fix-ID = ID of a previously defined fix

Examples:

unfix 2
unfix lower-boundary

Description:

Delete a fix that was previously defined with a fix
command.

Restrictions:

none

Related commands:

fix command

Default:

none

units command

Syntax:

units style

	style = cgs or si

Examples:

units cgs

Description:

This command sets the style of units used for a simulation. It
determines the units of all quantities specified in the input script and
various input files read by SPARTA, as well as the units of all
quantities output to the screen, log file, dump files, and other output
files. Typically, this command is used at the very beginning of an input
script.

Important

Internally, this command simply sets the numeric values of conversion factors used by SPARTA, e.g. the Boltzmann constant used to convert temperature to energy. It is up to you to insure that all input values used in the input script and other input files (surface data, species files, reaction files) contain numeric values consistent with the chosen units.

For style cgs, these are the units:

	mass = grams

	distance = centimeters

	area = cm^2

	volume = cm^3

	time = seconds

	energy = ergs

	velocity = centimeters/second

	acceleration = centimeters/second^2

	pressure = barye (dyne/cm^2 = 0.1 pascals)

	temperature = degrees K

For style si, these are the units:

	mass = kilograms

	distance = meters

	area = m^2

	volume = m^3

	time = seconds

	energy = Joules

	velocity = meters/second

	acceleration = meters/second^2

	pressure = pascals (newton/meter^2)

	temperature = degrees K

The units command also sets a default timestep size; see the
timestep command to change this value.

	For style cgs this is dt = 1.0 sec.

	For style si this is dt = 1.0 sec.

Restrictions:

This command must be used before the simulation box is defined by a create_box command

Related commands:

none

Default:

units si

variable command

Syntax:

variable name style args ...

	name = name of variable to define

	style = delete or index or loop or world or universe or
uloop or string or format or getenv or file or internal
or equal or particle or grid

	delete = no args

	index args = one or more strings

	loop args = N
- N = integer size of loop, loop from 1 to N inclusive

	loop args = N pad
- N = integer size of loop, loop from 1 to N inclusive
- pad = all values will be same length, e.g. 001, 002, …, 100

	loop args = N1 N2
- N1,N2 = loop from N1 to N2 inclusive

	loop args = N1 N2 pad
- N1,N2 = loop from N1 to N2 inclusive
- pad = all values will be same length, e.g. 050, 051, …, 100

	world args = one string for each partition of processors

	universe args = one or more strings

	uloop args = N
- N = integer size of loop

	uloop args = N pad
- N = integer size of loop
- pad = all values will be same length, e.g. 001, 002, …, 100

	string arg = one string

	format args = vname fstr
- vname = name of equal-style variable to evaluate
- fstr = C-style format string

	getenv arg = one string

	file arg = filename

	internal arg = numeric value

	equal or particle or grid args = one formula containing numbers, stats keywords, math operations, particle vectors, compute/fix/variable references

	numbers = 0.0, 100, -5.4, 2.8e-4, etc

	constants = PI

	stats keywords = step, np, vol, etc from stats_style

	math operators = (), -x, x+y, x-y, x*y, x/y, x^y, x%y,

	x==y, x!=y, xy, x>=y, x&&y, x||y, !x

	math functions =

	sqrt(x), exp(x), ln(x), log(x), abs(x),

	sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),

	random(x,y), normal(x,y), ceil(x), floor(x), round(x)

	ramp(x,y), stagger(x,y), logfreq(x,y,z), stride(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y,z)

	special functions = sum(x), min(x), max(x), ave(x), trap(x), slope(x), next(x)

	particle vector = mass, type, x, y, z, vx, vy, vz

	compute references = c_ID, c_ID[i], c_ID[i][j]

	fix references = f_ID, f_ID[i], f_ID[i][j]

	surface collision model references = s_ID[i]

	surface reaction model references = r_ID[i]

	variable references = v_name

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable beta equal temp/3.0
variable beta equal "temp / 3.0"
variable b equal c_myTemp
variable b particle x*y/vol
variable foo string myfile
variable foo internal 3.5
variable f file values.txt
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15 pad
variable str format x %.6g
variable x delete

Description:

This command assigns one or more strings to a variable name for
evaluation later in the input script or during a simulation.

Variables can thus be useful in several contexts. A variable can be
defined and then referenced elsewhere in an input script to become part
of a new input command. For variable styles that store multiple strings,
the next command can be used to increment which string
is assigned to the variable. Variables of style equal store a formula
which when evaluated produces a single numeric value which can be output
either directly (see the print, fix print, and run every commands) or as
part of statistical output (see the stats_style
command), or used as input to an averaging fix (see the fix ave/time command). Variables of style particle
store a formula which when evaluated produces one numeric value per
particle which can be output to a dump file (see the dump particle command). Variables of style internal are used
by a few commands which set their value directly.

In the discussion that follows, the “name” of the variable is the
arbitrary string that is the 1st argument in the variable command. This
name can only contain alphanumeric characters and underscores. The
“string” is one or more of the subsequent arguments. The “string” can be
simple text as in the 1st example above, it can contain other variables
as in the 2nd example, or it can be a formula as in the 3rd example. The
“value” is the numeric quantity resulting from evaluation of the string.
Note that the same string can generate different values when it is
evaluated at different times during a simulation.

Important

When an input script line is encountered that defines a variable of style equal or particle or grid that contains a formula, the formula is NOT immediately evaluated and the result stored. See the discussion below about “Immediate Evaluation of Variables” if you want to do this. This is also true of the format style variable since it evaluates another variable when it is invoked.

Variables of style equal and particle and grid can be used as
inputs to various other commands which evaluate their formulas as
needed, e.g. at different timesteps during a run.

Variables of style internal can be used in place of an equal-style
variable, except by commands that set the value stored by the
internal-style variable. Thus any command that states it can use an
equal-style variable as an argument, can also use an internal-style
variable. This means that when the command evaluates the variable, it
will use the value set (internally) by another command.

Important

When a variable command is encountered in the input script and the variable name has already been specified, the command is ignored. This means variables can NOT be re-defined in an input script (with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting the variables; see the jump or include commands. It also means that using the command-line switch -var will override a corresponding index variable setting in the input script.

There are two exceptions to this rule. First, variables of style
string, getenv, internal, equal, and particle ARE redefined
each time the command is encountered. This allows these style of
variables to be redefined multiple times in an input script. In a loop,
this means the formula associated with an equal or particle style
variable can change if it contains a substitution for another variable,
e.g. $x or v_x.

Second, as described below, if a variable is iterated on to the end of
its list of strings via the next command, it is removed
from the list of active variables, and is thus available to be
re-defined in a subsequent variable command. The delete style does the
same thing.

Section 3.2 of the manual explains how
occurrences of a variable name in an input script line are replaced by
the variable’s string. The variable name can be referenced as $x if the
name “x” is a single character, or as ${LoopVar} if the name “LoopVar”
is one or more characters.

As described below, for variable styles index, loop, universe, and
uloop, which string is assigned to a variable can be incremented via
the next command. When there are no more strings to
assign, the variable is exhausted and a flag is set that causes the next
jump command encountered in the input script to be
skipped. This enables the construction of simple loops in the input
script that are iterated over and then exited from.

As explained above, an exhausted variable can be re-used in an input
script. The delete style also removes the variable, the same as if it
were exhausted, allowing it to be redefined later in the input script or
when the input script is looped over. This can be useful when breaking
out of a loop via the if and jump commands
before the variable would become exhausted. For example,

label loop
variable a loop 5
print "A = $a"
if "$a > 2" then "jump in.script break"
next a
jump in.script loop
label break
variable a delete

	Styles and arguments

	Formulas

	Math Operators

	Math Functions

	Special Functions

	Particle Vectors

	Compute References

	Fix References

	Surface Collision and Surface Reaction Model References

	Variable References

	Variable Accuracy:

Styles and arguments

This section describes how various variable styles are defined and what
they store. Many of the styles store one or more strings. Note that a
single string can contain spaces (multiple words), if it is enclosed in
quotes in the variable command. When the variable is substituted for in
another input script command, its returned string will then be
interpreted as multiple arguments in the expanded command.

	For the index style,

	one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time a next command is used with the variable name, the next string is assigned. All processors assign the same string to the variable.

	Index style variables

	with a single string value can also be set by using the command-line switch -var; see Section 2.6 of the manual for details.

	The loop style

	is identical to the index style except that the strings are the integers from 1 to N inclusive, if only one argument N is specified. This allows generation of a long list of runs (e.g. 1000) without having to list N strings in the input script. Initially, the string “1” is assigned to the variable. Each time a next command is used with the variable name, the next string (“2”, “3”, etc) is assigned. All processors assign the same string to the variable. The loop style can also be specified with two arguments N1 and N2. In this case the loop runs from N1 to N2 inclusive, and the string N1 is initially assigned to the variable. N1 <= N2 and N2 >= 0 is required.

	For the world style,

	one or more strings are specified. There must be one string for each processor partition or “world”. See Section 2.6 of the manual for information on running SPARTA with multiple partitions via the “-partition” command-line switch. This variable command assigns one string to each world. All processors in the world are assigned the same string. The next command cannot be used with equal style variables, since there is only one value per world. This style of variable is useful when you wish to run different simulations on different partitions.

	For the universe style,

	one or more strings are specified. There must be at least as many strings as there are processor partitions or “worlds”. See this page for information on running SPARTA with multiple partitions via the “-partition” command-line switch. This variable command initially assigns one string to each world.
When a next command is encountered using this variable, the first processor partition to encounter it, is assigned the next available string. This continues until all the variable strings are consumed. Thus, this command can be used to run 50 simulations on 8 processor partitions.
The simulations will be run one after the other on whatever partition becomes available, until they are all finished. Universe style variables are incremented using the files “tmp.sparta.variable” and “tmp.sparta.variable.lock” which you will see in your directory during such a SPARTA run.

	The uloop style

	is identical to the universe style except that the strings are the integers from 1 to N. This allows generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

	For the string style,

	a single string is assigned to the variable. The only difference between this and using the index style with a single string is that a variable with string style can be redefined. E.g. by another command later in the input script, or if the script is read again in a loop.

	For the format style,

	an equal-style variable is specified along with a C-style format string, e.g. “%f” or “%.10g”, which must be appropriate for formatting a double-precision floating-point value. This allows an equal-style variable to be formatted specifically for output as a string, e.g. by the print command, if the default format “%.15g” has too much precision.

	For the getenv style,

	a single string is assigned to the variable which should be the name of an environment variable. When the variable is evaluated, it returns the value of the environment variable, or an empty string if it not defined. This style of variable can be used to adapt the behavior of SPARTA input scripts via environment variable settings, or to retrieve information that has been previously stored with the shell putenv command. Note that because environment variable settings are stored by the operating systems, they persist beyond a clear command.

	For the file style,

	a filename is provided which contains a list of strings to assign to the variable, one per line. The strings can be numeric values if desired. See the discussion of the next() function below for equal-style variables, which will convert the string of a file-style variable into a numeric value in a formula.

	When a file-style variable is defined,

	the file is opened and the string on the first line is read and stored with the variable. This means the variable can then be evaluated as many times as desired and will return that string. There are two ways to cause the next string from the file to be read: use the next command or the next() function in an equal- or particle- or grid-style variable, as discussed below.

The rules for formatting the file are as follows. A comment character “#” can be used anywhere on a line; text starting with the comment character is stripped. Blank lines are skipped. The first “word” of a non-blank line, delimited by white space, is the “string” assigned to the variable.

	For the internal style

	a numeric value is provided. This value will be assigned to the variable until a SPARTA command sets it to a new value. There is currently only one command that requirew internal variables as inputs, because it resets them: create_particles. As mentioned above, an internal-style variable can be used in place of an equal-style variable anywhere else in an input script, e.g. as an argument to another command that allows for equal-style variables.

	For the equal and particle and grid styles,

	a single string is specified which represents a formula that will be evaluated afresh each time the variable is used. If you want spaces in the string, enclose it in double quotes so the parser will treat it as a single argument. For equal style variables the formula computes a scalar quantity, which becomes the value of the variable whenever it is evaluated. For particle style variables the formula computes one quantity for each particle whenever it is evaluated. For grid style variables the formula computes one quantity for each grid cell whenever it is evaluated. A grid style variable computes quantites for all flavors of child grid cells in the simulation, which includes unsplit, cut, split, and sub cells. See Details of grid geometry in SPARTA of the manual gives details of how SPARTA defines child, unsplit, split, and sub cells.

Note

that equal and particle and grid variables can produce different values at different stages of the input script or at different times during a run. For example, if an equal variable is used in a fix print command, different values could be printed each timestep it was invoked. If you want a variable to be evaluated immediately, so that the result is stored by the variable instead of the string, see the section below on “Immediate Evaluation of Variables”.

	The next command

	cannot be used with equal or particle or grid style variables, since there is only one string.

Formulas

The formula for an equal or particle or grid variable can contain a variety of quantities. The syntax for each kind of quantity is simple, but multiple quantities can be nested and combined in various ways to build up formulas of arbitrary complexity. For example, this is a valid (though strange) variable formula:

variable x equal "np + c_MyTemp / vol^(1/3)"

Specifically, a formula can contain numbers, stats keywords, math
operators, math functions, particle vectors, compute references, fix
references, and references to other variables.

Components of formulas

	Number

	0.2, 100, 1.0e20, -15.4, etc

	Constant

	PI

	Stats keywords

	step, np, vol, etc

	Math operators

	(), -x, x+y, x-y, x*y, x/y, x^y, x%y, x==y, x!=y, xy, x>=y, x&&y, x||y, !x

	Math functions

	sqrt(x), exp(x), ln(x), log(x), abs(x), sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y,x),

	
	random(x,y,z), normal(x,y,z), ceil(x), floor(x), round(x), ramp(x,y),

	
	stagger(x,y), logfreq(x,y,z), stride(x,y,z), vdisplace(x,y), swiggle(x,y,z), cwiggle(x,y

	Special functions

	sum(x), min(x), max(x), ave(x), trap(x), slope(x), next(x)

	Particle vectors

	mass, type, x, y, z, vx, vy, vz

	Compute references

	c_ID, c_ID[i], c_ID[i][j]

	Fix references

	f_ID, f_ID[i], f_ID[i][j]

	Surface collision model referen

	es s_ID[i]

	Surface reaction model referenc

	s r_ID[i]

	Other variables

	v_name

Most of the formula elements produce a scalar value. A few produce a
per-particle vector or per-grid vector of values. These are the particle
vectors, compute references that represent a per-particle or per-grid
vector, fix references that represent a per-particle or per-grid vector,
and variables that are particle-style or grid-style variables. Math
functions that operate on scalar values produce a scalar value; math
function that operate on per-particle vectors do so element-by-element
and produce a per-particle vector.

A formula for equal-style variables cannot use any formula element that
produces a per-particle or per-grid vector. A formula for a
particle-style variable can use formula elements that produce either a
scalar value or a per-particle vector, but not a per-grid vector.
Likewise a particlgrid-style variable can use formula elements that
produce either a scalar value or a per-grid vector, but not a
per-particle vector.

The stats keywords allowed in a formula are those defined by the
stats_style custom command. If a variable is
evaluated directly in an input script (not during a run), then the
values accessed by the stats keyword must be current. See the discussion
below about “Variable Accuracy”.

Math Operators

Math operators are written in the usual way, where the “x” and “y” in
the examples can themselves be arbitrarily complex formulas, as in the
examples above. In this syntax, “x” and “y” can be scalar values or
per-particle or per-grid vectors. For example, “vol/np” is the division
of two scalars, where “vy+vz” is the element-by-element sum of two
per-particle vectors of y and z velocities.

Operators are evaluated left to right and have the usual C-style
precedence: unary minus and unary logical NOT operator “!” have the
highest precedence, exponentiation “^” is next; multiplication and
division and the modulo operator “%” are next; addition and subtraction
are next; the 4 relational operators “<”, “<=”, “>”, and “>=” are next;
the two remaining relational operators “==” and “!=” are next; then the
logical AND operator “&&”; and finally the logical OR operator “||” has
the lowest precedence. Parenthesis can be used to group one or more
portions of a formula and/or enforce a different order of evaluation
than what would occur with the default precedence.

Important

Because a unary minus is higher precedence than exponentiation, the formula “-2^2” will evaluate to 4, not -4. This convention is compatible with some programming languages, but not others. As mentioned, this behavior can be easily overridden with parenthesis; the formula “-(2^2)” will evaluate to -4.

The 6 relational operators return either a 1.0 or 0.0 depending on
whether the relationship between x and y is TRUE or FALSE. For example
the expression x<10.0 in a particle-style variable formula will return
1.0 for all particles whose x-coordinate is less than 10.0, and 0.0 for
the others. The logical AND operator will return 1.0 if both its
arguments are non-zero, else it returns 0.0. The logical OR operator
will return 1.0 if either of its arguments is non-zero, else it returns
0.0. The logical NOT operator returns 1.0 if its argument is 0.0, else
it returns 0.0.

These relational and logical operators can be used as a masking or
selection operation in a formula. For example, the number of particles
whose properties satifsy one or more criteria could be calculated by
taking the returned per-particle vector of ones and zeroes and passing
it to the compute reduce command.

Math Functions

Math functions are specified as keywords followed by one or more
parenthesized arguments “x”, “y”, “z”, each of which can themselves be
arbitrarily complex formulas. In this syntax, the arguments can
represent scalar values or per-particle or per-grid vectors. In the
latter cases, the math operation is performed on each element of the
vector. For example, “sqrt(np)” is the sqrt() of a scalar, where
“sqrt(y*z)” yields a per-particle vector with each element being the
sqrt() of the product of one particle’s y and z coordinates.

Most of the math functions perform obvious operations. The ln() is the
natural log; log() is the base 10 log.

The random(x,y) function takes 2 arguments: x = lo and y = hi. It generates a uniform random number between lo and hi. The normal(x,y) function also takes 2 arguments: \(x = \mu\) and \(y = \sigma\). It generates a Gaussian variate centered on mu with variance \(\sigma^2\). For equal-style variables, every processor uses the same random number seed so that they each generate the same sequence of random numbers. For particle-style or grid-style variables, a unique seed is created for each processor. This effectively generates a different random number for each particle or grid cell being looped over in the particle-style or grid-style variable.

Important

Internally, there is just one random number generator for all equal-style variables and one for all particle-style and grid-style variables. If you define multiple variables (of each style) which use the random() or normal() math functions, then the internal random number generators will only be initialized once.

The ceil(), floor(), and round() functions are those in the C math
library. Ceil() is the smallest integer not less than its argument.
Floor() if the largest integer not greater than its argument. Round() is
the nearest integer to its argument.

The ramp(x,y) function uses the current timestep to generate a value
linearly intepolated between the specified x,y values over the course of
a run, according to this formula:

value = x + (y-x) * (timestep-startstep) / (stopstep-startstep)

The run begins on startstep and ends on stopstep. Startstep and stopstep
can span multiple runs, using the start and stop keywords of the
run command. See the run command for
details of how to do this.

Important

Currently, the run command does not currently support the start/stop keywords. In the formula above startstep = 0 and stopstep = the number of timesteps being performed by the run.

The stagger(x,y) function uses the current timestep to generate a new
timestep. X,y > 0 and x > y are required. The generated timesteps
increase in a staggered fashion, as the sequence
x,x+y,2x,2x+y,3x,3x+y,etc. For any current timestep, the next timestep
in the sequence is returned. Thus if stagger(1000,100) is used in a
variable by the dump_modify every command, it
will generate the sequence of output timesteps:

100,1000,1100,2000,2100,3000,etc

The logfreq(x,y,z) function uses the current timestep to generate a new timestep. X,y,z > 0 and y < z are required. The generated timesteps increase in a logarithmic fashion, as the sequence x,2x,3x,…y*x,z*x,2*z*x,3*z*x,…y*z*x,z*z*x,2*z*x*x,etc. For any current timestep, the next timestep in the sequence is returned. Thus if logfreq(100,4,10) is used in a variable by the dump_modify every command, it will generate the sequence of output timesteps:

100,200,300,400,1000,2000,3000,4000,10000,20000,etc

The stride(x,y,z) function uses the current timestep to generate a new timestep. X,y >= 0 and z > 0 and x <= y are required. The generated timesteps increase in increments of z, from x to y, I.e. it generates the sequece x,x+z,x+2z,…,y. If y-x is not a multiple of z, then similar to the way a for loop operates, the last value will be one that does not exceed y. For any current timestep, the next timestep in the sequence is returned. Thus if stagger(1000,2000,100) is used in a variable by the dump_modify every command, it will generate the sequence of output timesteps:

1000,1100,1200, ... ,1900,2000

The vdisplace(x,y) function takes 2 arguments: x = value0 and y = velocity, and uses the elapsed time to change the value by a linear displacement due to the applied velocity over the course of a run, according to this formula:

value = value0 + velocity*(timestep-startstep)*dt

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command. See the run command for details of how to do this. Note that the stats_style keyword elaplong = timestep-startstep.

The swiggle(x,y,z) and cwiggle(x,y,z) functions each take 3 arguments: x = value0, y = amplitude, z = period. They use the elapsed time to oscillate the value by a sin() or cos() function over the course of a run, according to one of these formulas, where omega = 2 PI / period:

value = value0 + Amplitude * sin(omega*(timestep-startstep)*dt)
value = value0 + Amplitude * (1 - cos(omega*(timestep-startstep)*dt))

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command. See the run command for details of how to do this. Note that the stats_style keyword elaplong = timestep-startstep.

Special Functions

Special functions take specific kinds of arguments, meaning their
arguments cannot be formulas themselves.

The sum(x), min(x), max(x), ave(x), trap(x), and slope(x) functions each take 1 argument which is of the form “c_ID” or “c_ID[N]” or “f_ID” or “f_ID[N]”. The first two are computes and the second two are fixes; the ID in the reference should be replaced by the ID of a compute or fix defined elsewhere in the input script. The compute or fix must produce either a global vector or array. If it produces a global vector, then the notation without “[N]” should be used. If it produces a global array, then the notation with “[N]” should be used, when N is an integer, to specify which column of the global array is being referenced.

These functions operate on the global vector of inputs and reduce it to a single scalar value. This is analagous to the operation of the compute reduce command, which invokes the same functions on per-particle or per-grid vectors.

The sum() function calculates the sum of all the vector elements. The min() and max() functions find the minimum and maximum element respectively. The ave() function is the same as sum() except that it divides the result by the length of the vector.

The trap() function is the same as sum() except the first and last
elements are multiplied by a weighting factor of 1/2 when performing the
sum. This effectively implements an integration via the trapezoidal
rule on the global vector of data. I.e. consider a set of points,
equally spaced by 1 in their x coordinate: (1,V1), (2,V2), …, (N,VN),
where the Vi are the values in the global vector of length N. The
integral from 1 to N of these points is trap().

The slope() function uses linear regression to fit a line to the set of
points, equally spaced by 1 in their x coordinate: (1,V1), (2,V2), …,
(N,VN), where the Vi are the values in the global vector of length N.
The returned value is the slope of the line. If the line has a single
point or is vertical, it returns 1.0e20.

The next(x) function takes 1 argument which is a variable ID (not
“v_foo”, just “foo”). It must be for a file-style
variable. Each time the next() function is invoked (i.e. each time
the equal-style or particle-style or grid-style variable is evaluated),
the following steps occur.

For file-style variables, the current string value stored by the
file-style variable is converted to a numeric value and returned by the
function. And the next string value in the file is read and stored. Note
that if the line previously read from the file was not a numeric string,
then it will typically evaluate to 0.0, which is likely not what you
want.

Since file-style variables read and store the first line of the file
when they are defined in the input script, this is the value that will
be returned the first time the next() function is invoked. If next() is
invoked more times than there are lines in the file, the variable is
deleted, similar to how the next command operates.

Particle Vectors

Particle vectors generate one value per particle, so that a reference
like “vx” means the x-component of each particles’s velocity will be
used when evaluating the variable.

The meaning of the different particle vectors is self-explanatory.

Particle vectors can only be used in particle style variables, not in
equal or grid style varaibles.

Compute References

Compute references access quantities calculated by a compute. The ID in the reference should be replaced by the ID of a compute defined elsewhere in the input script. As discussed in the doc page for the compute command, computes can produce global, per-particle, per-grid, or per-surf values. Only global and per-particle and per-grid values can be used in a variable. Computes can also produce a scalar, vector, or array. An equal-style variable can only use scalar values, which means a global scalar, or an element of a global vector or array. Particle-style variables can use the same scalar values. They can also use per-particle vector values. A vector value can be a per-particle vector itself, or a column of an per-particle array.
Grid-style variables can use the same scalar values. They can also use per-grid vector values. A vector value can be a per-grid vector itself, or a column of an per-grid array. See the doc pages for individual computes to see what kind of values they produce.

Examples of different kinds of compute references are as follows. There is no ambiguity as to what a reference means, since computes only produce global or per-particle or per-grid quantities, never more than one kind of quantity.

	c_ID

	global scalar, or per-particle or per-grid vector

	c_ID[I]

	Ith element of global vector, or Ith column from per-particle or per-grid array

	c_ID[I][J]

	I,J element of global array

For I and J, integers can be specified or a variable name, specified as
v_name, where name is the name of the variable, like x[v_myIndex]. The
variable can be of any style expect particle-style. The variable is
evaluated and the result is expected to be numeric and is cast to an
integer (i.e. 3.4 becomes 3), to use an an index, which must be a value
from 1 to N. Note that a “formula” cannot be used as the argument
between the brackets, e.g. x[243+10] or x[v_myIndex+1] are not allowed.
To do this a single variable can be defined that contains the needed
formula.

If a variable containing a compute is evaluated directly in an input script (not during a run), then the values accessed by the compute must be current. See the discussion below about “Variable Accuracy”.

Fix References

Fix references access quantities calculated by a fix.
The ID in the reference should be replaced by the ID of a fix defined
elsewhere in the input script. As discussed in the doc page for the
fix command, fixes can produce global, per-particle,
per-grid, or per-surf values. Only global and per-particle and per-grid
values can be used in a variable. Fixes can also produce a scalar,
vector, or array. An equal-style variable can only use scalar values,
which means a global scalar, or an element of a global vector or array.
Particle-style variables can use the same scalar values. They can also
use per-particle vector values. A vector value can be a per-particle
vector itself, or a column of an per-particle array. Grid-style
variables can use the same scalar values. They can also use per-grid
vector values. A vector value can be a per-grid vector itself, or a
column of an per-grid array. See the doc pages for individual fixes to
see what kind of values they produce.

The different kinds of fix references are exactly the same as the
compute references listed in the above table, where c_ is replaced by
f_. Again, there is no ambiguity as to what a reference means, since
fixes only produce global or per-particle or per-grid quantities, never
more than one kind of quantity.

	f_ID

	global scalar, or per-particle or per-grid vector

	f_ID[I]

	Ith element of global vector, or Ith column from per-particle or per-grid array

	f_ID[I][J]

	I,J element of global array

For I and J, integers can be specified or a variable name, specified as v_name, where name is the name of the variable. The rules for this syntax are the same as for the “Compute References” discussion above.

If a variable containing a fix is evaluated directly in an input script (not during a run), then the values accessed by the fix should be current. See the discussion below about “Variable Accuracy”.

Note that some fixes only generate quantities on certain timesteps. If a variable attempts to access the fix on non-allowed timesteps, an error is generated. For example, the fix ave/time command may only generate averaged quantities every 100 steps. See the doc pages for individual fix commands for details.

Surface Collision and Surface Reaction Model References

These references access quantities calculated by a surf_collide command or surf_react command. The ID in the reference should be replaced by the ID of a surface collision or surface reaction model defined elsewhere in the input script. As discussed in the doc pages for the surf_collide command and surf_react command, they produce global vectors, the elements of which can be accessed by equal-style or particle-style or grid-style variables, e.g.

	s_ID[I]

	Ith element of global vector for a surface collision model

	r_ID[I]

	Ith element of global vector for a surface reaction model

Variable References

Variable references access quantities stored or calculated by other
variables, which will cause those variables to be evaluated. The name in
the reference should be replaced by the name of a variable defined
elsewhere in the input script.

As discussed on this doc page, equal-style variables generate a global
scalar numeric value; particle-style variables generate a per-particle
vector of numeric values; grid-style variables generate a per-grid
vector of numeric values; all other variables store a string. The
formula for an equal-style variable can use any style of variable except
a particle- or grid-style. The formula for a particle-style variable can
use any style of variable except a grid-style. The formula for a
grid-style variable can use any style of variable except a
particle-style. If a string-storing variable is used, the string is
converted to a numeric value. Note that this will typically produce a
0.0 if the string is not a numeric string, which is likely not what you
want. The formula for a particle-style variable can use any style of
variable, including other particle-style variables.

Examples of different kinds of variable references are as follows. There
is no ambiguity as to what a reference means, since variables produce
only a global scalar or a per-particle or per-grid vector, never more
than one of these quantities.

	v_name

	scalar, or per-particle or per-grid vector

Immediate Evaluation of Variables:

There is a difference between referencing a variable with a leading $
sign (e.g. $x or ${abc}) versus with a leading v_ (e.g. v_x or v_abc).
The former can be used in any input script command, including a variable
command. The input script parser evaluates the reference variable
immediately and substitutes its value into the command. As explained in
Section commands 3.2 for “Parsing
rules”, you can also use un-named “immediate” variables for this
purpose. For example, a string like this $((xlo+xhi)/2+sqrt(v_area)) in
an input script command evaluates the string between the parenthesis as
an equal-style variable formula.

Referencing a variable with a leading v_ is an optional or required
kind of argument for some commands (e.g. the fix ave/spatial or dump custom or
stats_style commands) if you wish it to evaluate
a variable periodically during a run. It can also be used in a variable
formula if you wish to reference a second variable. The second variable
will be evaluated whenever the first variable is evaluated.

As an example, suppose you use this command in your input script to
define the variable “n” as

variable n equal np

before a run where the particle count changes. You might think this will
assign the initial count to the variable “n”. That is not the case.
Rather it assigns a formula which evaluates the count (using the
stats_style keyword “np”) to the variable “n”. If you use the variable
“n” in some other command like fix ave/time then
the current particle count will be evaluated continuously during the
run.

If you want to store the initial particle count of the system, it can be
done in this manner:

variable n equal np
variable n0 equal $n

The second command will force “n” to be evaluated (yielding the initial
count) and assign that value to the variable “n0”. Thus the command

stats_style custom step v_n v_n0

would print out both the current and initial particle count periodically
during the run.

Also note that it is a mistake to enclose a variable formula in quotes
if it contains variables preceeded by $ signs. For example,

variable nratio equal "${nfinal}/${n0}"

This is because the quotes prevent variable substitution (see Section
2.2 of the manual on parsing input script commands),
and thus an error will occur when the formula for “nratio” is evaluated later.

Variable Accuracy:

Obviously, SPARTA attempts to evaluate variables containing formulas
(equal and particle and grid style variables) accurately whenever
the evaluation is performed. Depending on what is included in the
formula, this may require invoking a compute, or
accessing a value previously calculated by a compute, or accessing a
value calculated and stored by a fix. If the compute is
one that calculates certain properties of the system such as the
pressure induced on a global boundary due to collisions, then these
quantities need to be tallied during the timesteps on which the variable
will need the values.

SPARTA keeps track of all of this during a run. An error
will be generated if you attempt to evaluate a variable on timesteps
when it cannot produce accurate values. For example, if a stats_style custom command prints a variable which accesses
values stored by a fix ave/time command and the
timesteps on which stats output is generated are not multiples of the
averaging frequency used in the fix command, then an error will occur.

An input script can also request variables be evaluated before or after
or in between runs, e.g. by including them in a print
command. In this case, if a compute is needed to evaluate a variable
(either directly or indirectly), SPARTA will not invoke the compute, but
it will use a value previously calculated by the compute, and can do
this only if it was invoked on the current timestep. Fixes will always
provide a quantity needed by a variable, but the quantity may or may not
be current. This leads to one of three kinds of behavior:

	The variable may be evaluated accurately. If it contains references to a compute or fix, and these values were calculated on the last timestep of a preceeding run, then they will be accessed and used by the variable and the result will be accurate.

	SPARTA may not be able to evaluate the variable and will generate an error message stating so. For example, if the variable requires a quantity from a compute that has not been invoked on the current timestep, SPARTA will generate an error. This means, for example, that such a variable cannot be evaluated before the first run has occurred. Likewise, in between runs, a variable containing a compute cannot be evaluated unless the compute was invoked on the last timestep of the preceding run, e.g. by stats output.

One way to get around this problem is to perform a 0-timestep run before using the variable. For example, these commands

compute myTemp grid all temp
variable t equal c_myTemp1
print "Initial temperature = $t"
run 1000

will generate an error if the run is the first run specified in the input script, because generating a value for the “t” variable requires a compute for calculating the temperature to be invoked.

However, this sequence of commands would be fine:

compute myTemp grid all temp
variable t equal c_myTemp1
run 0
print "Initial temperature = $t"
run 1000

The 0-timestep run initializes and invokes various computes, including the one for temperature, so that the value it stores is current and can be accessed by the variable “t” after the run has completed. Note that a 0-timestep run does not alter the state of the system, so it does not change the input state for the 1000-timestep run that follows. Also note that the 0-timestep run must actually use and invoke the compute in question (e.g. via stats or dump output) in order for it to enable the compute to be used in a variable after the run. Thus if you are trying to print a variable that uses a compute you have defined, you can insure it is invoked on the last timestep of the preceding run by including it in stats output.

Unlike computes, fixes will never generate an error if their values are accessed by a variable in between runs. They always return some value to the variable. However, the value may not be what you expect if the fix has not yet calculated the quantity of interest or it is not current. For example, the fix indent command stores the force on the indenter. But this is not computed until a run is performed. Thus if a variable attempts to print this value before the first run, zeroes will be output. Again, performing a 0-timestep run before printing the variable has the desired effect.

	The variable may be evaluated incorrectly. And SPARTA may have no way to detect this has occurred. Consider the following sequence of commands:

compute myTemp grid all temp
variable t equal c_myTemp1
run 1000
create_particles all n 10000
print "Final temperature = $t"

The first run is performed using the current set of particles. The temperature is evaluated on the final timestep and stored by the compute grid compute (when invoked by the stats_style command). Then new particles are added by the create_particles command, altering the temperature of the system. When the temperature is printed via the “t” variable, SPARTA will use the temperature value stored by the compute grid command, thinking it is current. There are many other commands which could alter the state of the system between runs, causing a variable to evaluate incorrectly.

The solution to this issue is the same as for case (2) above, namely perform a 0-timestep run before the variable is evaluated to insure the system is up-to-date. For example, this sequence of commands would print a temperature that reflected the new particles:

compute myTemp grid all temp
variable t equal c_myTemp1
run 1000
create_particles all n 10000
run 0
print "Final temperature = $t"

Restrictions:

All universe- and uloop-style variables defined in an input script
must have the same number of values.

Related commands:

next command,
jump command,
include command,
fix print command,
print command

Default:

none

write_grid command

Syntax:

write_grid filename

	filename = name of file to write grid info to

Examples:

write_grid data.grid

Description:

Write a grid file in text format listing the grid cell IDs in the
current hierarchical grid. See the read_grid and
create_grid commands, as well as Section 6.8 of the manual for a definition of
hierarchical grids and grid cell IDs as used by SPARTA.

The file is in the following format which is the same as the input
file used by the read_grid command. Thus the file
can be used to start a subsequent simulation with the same grid
topology.

Description line

N cells
M levels
n1 n2 n3 level-1
n1 n2 n3 level-2
...
n1 n2 n3 level-M

Cells

id1
id2
...
idN ...

The file begins with an arbitrary description line followed by zero or
more blank lines. The header section of the file then lists the
number of grid cells N and the number of levels M in the hierarchical
grid. For each level the n1, n2, n3 values give the size of the
sub-grid that parent cells (one level lower) are sub-divided into at
this level. The lines in the header section can be in any order
except the the number of levels M must appear before any of the
level-* lines. A blank line ends the header section.

The Cells section of the file lists all the grid cell IDs, one per
line. They may be in arbitrary order, particularly if the file is
written in parallel, where each processor contributes a subset of the
grid cell IDs.

Restrictions:

none

Related commands:

	read_grid command

	create_grid command

Default:

none

write_isurf command

Syntax:

write_isurf group-ID Nx Ny Nz filename ablateID keyword args ...

	group-ID = group ID for which grid cells store the implicit surfs

	Nx,Ny,Nz = grid cell extent of the grid cell group

	filename = name of file to write grid corner point info to

	ablateID = ID of the fix ablate command which
stores the corner points

	zero or more keyword/args pairs may be appended

	keyword = precision

precision arg = int or double

Examples:

write_isurf block 100 100 200 isurf.material.* ablation

Description:

Write a grid corner point file in binary format describing the current
corner point values which define the current set of implicit surface
elements. See the read_isurf command for a
definition of implicit surface elements and how they are defined from
grid conner point values. The surface file can be used for later input
to a new simulation or for post-processing and visualization.

The specified group-ID is the name of a grid cell group, as defined by
the group grid command, which contains a set of grid
cells, all of which are the same size, and which comprise a contiguous
3d array, with specified extent Nx by Ny by Nz. These should be
the same parameters that were used by the
read_isurf command, when the original grid corner
point values were read in and used to define a set of implicit surface
elements. For 2d simulations, Nz must be specified as 1, and the group
must comprise a 2d array of cells that is Nx by Ny. These are the
grid cells that contain implicit surfaces.

Similar to dump files, the filename can contain a “*”
wildcard character. The “*” character is replaced with the current
timestep value. For example isurf.material.0 or isurf.material.100000.

The specified ablateID is the fix ID of a fix ablate command which has been previously specified
in the input script for use with the read_isurf
command and (optionally) to perform ablation during a simulation. It
stores the grid corner point values for each grid cell.

The output file is written in the same binary format as the
read_isurf command reads in.

Restrictions:

none

Related commands:

read_isurf command

Default:

The optional keyword default is precision double.

write_restart command

Syntax:

write_restart file keyword value ...

	file = name of file to write restart information to

	zero or more keyword/value pairs may be appended

	keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors
nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

Examples:

write_restart restart.equil
write_restart restart.equil.mpiio
write_restart flow.%.* nfile 10

Description:

Write a binary restart file with the current state of the simulation.

During a long simulation, the restart command can be
used to output restart files periodically. The write_restart command is
useful at the end of a run or between two runs, whenever you wish to
write out a single current restart file.

Similar to dump files, the restart filename can contain
two wild-card characters. If a “*” appears in the filename, it is
replaced with the current timestep value. If a “%” character appears in
the filename, then one file is written by each processor and the “%”
character is replaced with the processor ID from 0 to P-1. An additional
file with the “%” replaced by “base” is also written, which contains
global information. For example, the files written for filename
restart.% would be restart.base, restart.0, restart.1, … restart.P-1.
This creates smaller files and can be a fast mode of output and
subsequent input on parallel machines that support parallel I/O. The
optional fileper and nfile keywords discussed below can alter the
number of files written.

Restart files can be read by a read_restart
command to restart a simulation from a particular state. Because the
file is binary, it may not be readable on another machine.

IMPORTANT NOTE: Although the purpose of restart files is to enable
restarting a simulation from where it left off, not all information
about a simulation is stored in the file. For example, the list of fixes
that were specified during the initial run is not stored, which means
the new input script must specify any fixes you want to use. See the
read_restart command for details about what is
stored in a restart file.

The optional nfile or fileper keywords can be used in conjunction
with the “%” wildcard character in the specified restart file name. As
explained above, the “%” character causes the restart file to be written
in pieces, one piece for each of P processors. By default P = the number
of processors the simulation is running on. The nfile or fileper
keyword can be used to set P to a smaller value, which can be more
efficient when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf
= 4, and the simulation is running on 100 processors, 4 files will be
written, by processors 0,25,50,75. Each will collect information from
itself and the next 24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one
file for every Np processors. For example, if Np = 4, every 4th
processor (0,4,8,12,etc) will collect information from itself and the
next 3 processors and write it to a restart file.

Restrictions:

none

Related commands:

restart command
read_restart command

Default:

none

write_surf command

Syntax:

write_surf file

	file = name of file to write surface element info to

	zero or more keyword/args pairs may be appended

	keyword = points or fileper or nfile

points arg = yes or no to include a Points section in the file
fileper arg = Np
 Np = write one file for every this many processors
nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

Examples:

write_surf data.surf
write_surf data.surf points no
write_surf data.surf.% nfile 50

Description:

Write a surface file in text format describing the currently defined
surface elements, whether they be explicit or implicit surfaces. See the
read_surf and read_isurf
commands for a definition of surface elements and how they are defined
and used be SPARTA. The surface file can be used for later input to a
new simulation or for post-processing and visualization.

Note that if surface objects were clipped when read in by the
read_surf command then some surface elements may
have been deleted and new ones created. Likewise for the points that
define the end points or corner points of surface element lines (2d) or
triangles (3d). Similarly, if surface elements have been removed by the
remove_surf command, then points may have also
been deleted. In either case, surface points and elements are renumbered
by these operations to create compressed, contiguous lists. These lists
are what is output by this command.

The file is written as a text file in the same format as the
read_surf command reads in. Note that a Points
section is optional. If the points keyword is specified with a value
of yes, then a Points section is included in the file. If the value is
no, then point coordinates are included with individual lines or
triangles.

Similar to dump files, the surface filename can contain
two wild-card characters. If a “*” appears in the filename, it is
replaced with the current timestep value. If a “%” character appears in
the filename, then one file is written by each processor and the “%”
character is replaced with the processor ID from 0 to P-1. An additional
file with the “%” replaced by “base” is also written, which contains
global information, i.e. just the header information for the number of
points and lines or triangles, as described on the
read_surf doc page.

For example, the files written for filename data.% would be data.base,
data.0, data.1, …, data.P-1. This creates smaller files and can be a
fast mode of output and subsequent input on parallel machines that
support parallel I/O. The optional fileper and nfile keywords
discussed below can alter the number of files written.

Note that implicit surfaces read in by the
read_isurf command can be written out by the
write_surf command, e.g. for visualization purposes. But they cannot be
read back in to SPARTA via the read_isurf command,
because write_surf creates files in an explicit surface format. See the
Howto 6.13 section of the manual for a
discussion of explicit and implicit surfaces for an explantion of
explicit versus implicit surfaces as well as distributed versus
non-distributed storage. You cannot mix explicit and implicit surfaces
in the same simulation.

The optional nfile or fileper keywords can be used in conjunction
with the “%” wildcard character in the specified surface file name. As
explained above, the “%” character causes the surface file to be written
in pieces, one piece for each of P processors. By default P = the number
of processors the simulation is running on. The nfile or fileper
keyword can be used to set P to a smaller value, which can be more
efficient when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf
= 4, and the simulation is running on 100 processors, 4 files will be
written, by processors 0,25,50,75. Each will collect information from
itself and the next 24 processors and write it to a surface file.

For the fileper keyword, the specified value of Np means write one
file for every Np processors. For example, if Np = 4, every 4th
processor (0,4,8,12,etc) will collect information from itself and the
next 3 processors and write it to a surface file.

Restrictions:

none

Related commands:

read_surf command
read_isurf command

Default:

The default is points = yes.

 _static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 SPARTA Documentation

 		
 Introduction

 		
 What is SPARTA

 		
 SPARTA features

 		
 General features

 		
 Models

 		
 Geometry

 		
 Gas-phase collisions and chemistry

 		
 Surface collisions and chemistry

 		
 Performance

 		
 Diagnostics

 		
 Output

 		
 Pre- and post-processing

 		
 Grids and surfaces in SPARTA

 		
 Open source distribution

 		
 Acknowledgments and citations

 		
 Getting Started

 		
 What’s in the SPARTA distribution

 		
 Making SPARTA

 		
 Read this first

 		
 Steps to build a SPARTA executable using make

 		
 Steps to build a SPARTA executable using CMake

 		
 Errors that can occur when making SPARTA

 		
 Additional build tips using make

 		
 Additional build tips using CMake

 		
 Building for a Mac

 		
 Building for Windows

 		
 Making SPARTA with optional packages

 		
 Package basics

 		
 Including/excluding packages with make

 		
 Including/excluding packages with CMake

 		
 Building SPARTA as a library

 		
 Static library:

 		
 Shared library:

 		
 Additional requirement for using a shared library:

 		
 Calling the SPARTA library:

 		
 Running SPARTA

 		
 Command-line options

 		
 SPARTA screen output

 		
 Commands

 		
 SPARTA input script

 		
 Parsing rules

 		
 Input script structure

 		
 Commands listed by category

 		
 Individual commands

 		
 Fix styles

 		
 Compute styles

 		
 Collide styles

 		
 Surface collide styles

 		
 Surface reaction styles

 		
 Packages

 		
 FFT package

 		
 Contents

 		
 Install or un-install with make:

 		
 Install or un-install with CMake:

 		
 Supporting info:

 		
 KOKKOS package

 		
 Contents:

 		
 Install or un-install:

 		
 Supporting info:

 		
 Accelerating SPARTA performance

 		
 Measuring performance

 		
 Packages with optimized styles

 		
 KOKKOS package

 		
 Building SPARTA with the KOKKOS package with Makefiles:

 		
 Building SPARTA with the KOKKOS package with CMake:

 		
 Compile for CPU-only (MPI only, no threading):

 		
 Compile for CPU-only (MPI plus OpenMP threading):

 		
 Compile for Intel KNL Xeon Phi (Intel Compiler, OpenMPI):

 		
 Compile for CPUs and GPUs (with OpenMPI or MPICH):

 		
 Running SPARTA with the KOKKOS package:

 		
 Core and Thread Affinity:

 		
 Running on Knight’s Landing (KNL) Intel Xeon Phi:

 		
 Advanced Kokkos options:

 		
 Restrictions:

 		
 How-to discussions

 		
 2d simulations

 		
 Axisymmetric simulations

 		
 Running multiple simulations from one input script

 		
 Output from SPARTA (stats, dumps, computes, fixes, variables)

 		
 Global/per-particle/per-grid/per-surf data

 		
 Scalar/vector/array data

 		
 Statistical output

 		
 Dump file output

 		
 Fixes that write output files

 		
 Computes that process output quantities

 		
 Computes that generate values to output

 		
 Fixes that generate values to output

 		
 Variables that generate values to output

 		
 Summary table of output options and data flow between commands

 		
 Visualizing SPARTA snapshots

 		
 Library interface to SPARTA

 		
 Coupling SPARTA to other codes

 		
 Details of grid geometry in SPARTA

 		
 Details of surfaces in SPARTA

 		
 Restarting a simulation

 		
 Using the ambipolar approximation

 		
 Using multiple vibrational energy levels

 		
 Surface elements: explicit, implicit, distributed

 		
 Implicit surface ablation

 		
 Transparent surface elements

 		
 Example problems

 		
 Performance & scalability

 		
 Additional tools

 		
 dump2cfg tool

 		
 dump2xyz tool

 		
 grid_refine tool

 		
 implicit_grid tool

 		
 jagged tools

 		
 log2txt tool

 		
 logplot tool

 		
 paraview tools

 		
 stl2surf tool

 		
 surf_create tool

 		
 surf_transform tool

 		
 Modifying & extending SPARTA

 		
 Compute styles

 		
 Fix styles

 		
 Region styles

 		
 Collision styles

 		
 Surface collision styles

 		
 Chemistry styles

 		
 Dump styles

 		
 Input script commands

 		
 Python interface to SPARTA

 		
 Building SPARTA as a shared library

 		
 Installing the Python wrapper into Python

 		
 Extending Python with MPI to run in parallel

 		
 Testing the Python-SPARTA interface

 		
 Test SPARTA and Python in serial:

 		
 Test SPARTA and Python in parallel:

 		
 Running Python scripts:

 		
 Using SPARTA from Python

 		
 Example Python scripts that use SPARTA

 		
 Errors

 		
 Common problems

 		
 Reporting bugs

 		
 Error & warning messages

 		
 Errors

 		
 Warnings

 		
 Future and history

 		
 Coming attractions

 		
 Past versions

_static/down.png

_static/minus.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/down-pressed.png

_images/species_variation_small.jpg

_images/split.jpg

_images/sphere_image_small.jpg

_static/ajax-loader.gif

_images/velocity_variation_small.jpg

_static/comment-bright.png

_images/porous3d_initial_small.png

_images/porous3d_ablated_small.png

_images/shuttle_small.jpg

_images/refine_grid.jpg

_images/partition_small.jpg

_images/mix_sine_small.jpg

_images/partition_zoom_cutoff.jpg

_images/partition_zoom.jpg

_images/porous2d_initial_small.png

_images/porous2d_ablated_small.png

_images/adapt_2d_small.jpg

_images/adapt_surf_small.jpg

_images/adapt_3d_small.jpg

_images/density_variation_small.jpg

